Xanel Vecino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5241532/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Study of biosurfactant extract from corn steep water as a potential ingredient in antiacne formulations. Journal of Dermatological Treatment, 2022, 33, 393-400.	1.1	6
2	Liquid–Liquid membrane contactors incorporating surface skin asymmetric hollow fibres of poly(4-methyl-1-pentene) for ammonium recovery as liquid fertilisers. Separation and Purification Technology, 2022, 283, 120212.	3.9	22
3	Removal of nitrate from groundwater by nano-scale zero-valent iron injection pulses in continuous-flow packed soil columns. Science of the Total Environment, 2022, 810, 152300.	3.9	20
4	Recovery of Polyphenols from Agri-Food By-Products: The Olive Oil and Winery Industries Cases. Foods, 2022, 11, 362.	1.9	52
5	Integration of membrane processes for the recovery and separation of polyphenols from winery and olive mill wastes using green solvent-based processing. Journal of Environmental Management, 2022, 307, 114555.	3.8	29
6	Wastewater Treatment by Adsorption and/or Ion-Exchange Processes for Resource Recovery. Water (Switzerland), 2022, 14, 911.	1.2	4
7	Integration of Nanofiltration and Reverse Osmosis Technologies in Polyphenols Recovery Schemes from Winery and Olive Mill Wastes by Aqueous-Based Processing. Membranes, 2022, 12, 339.	1.4	10
8	A green approach to phenolic compounds recovery from olive mill and winery wastes. Science of the Total Environment, 2022, 835, 155552.	3.9	14
9	Ammonia Valorization by Liquid–Liquid Membrane Contactors for Liquid Fertilizers Production: Experimental Conditions Evaluation. Membranes, 2022, 12, 663.	1.4	3
10	Recovery of Natural Polyphenols from Spinach and Orange By-Products by Pressure-Driven Membrane Processes. Membranes, 2022, 12, 669.	1.4	6
11	Arsenic impact on the valorisation schemes of acidic mine waters of the Iberian Pyrite Belt: Integration of selective precipitation and spiral-wound nanofiltration processes. Journal of Hazardous Materials, 2021, 403, 123886.	6.5	15
12	Study of the operational parameters in the hollow fibre liquid-liquid membrane contactors process for ammonia valorisation as liquid fertiliser. Separation and Purification Technology, 2021, 255, 117768.	3.9	25
13	Acid recovery from copper metallurgical process streams polluted with arsenic by diffusion dialysis. Journal of Environmental Chemical Engineering, 2021, 9, 104692.	3.3	9
14	Adding value to secondary streams of corn wet milling industry. CYTA - Journal of Food, 2021, 19, 675-681.	0.9	6
15	Nanomaterials synthesized by biosurfactants. Comprehensive Analytical Chemistry, 2021, , 267-301.	0.7	7
16	Synthetic and Bio-Derived Surfactants Versus Microbial Biosurfactants in the Cosmetic Industry: An Overview. International Journal of Molecular Sciences, 2021, 22, 2371.	1.8	70
17	Valorisation options for Zn and Cu recovery from metal influenced acid mine waters through selective precipitation and ion-exchange processes: promotion of on-site/off-site management options. Journal of Environmental Management, 2021, 283, 112004.	3.8	23
18	Evaluation of Morphological Changes in Grapes Coated with a Biosurfactant Extract Obtained from Corn Steep Liquor. Applied Sciences (Switzerland), 2021, 11, 5904.	1.3	4

#	Article	IF	CITATIONS
19	Ion-Exchange Technology for Lactic Acid Recovery in Downstream Processing: Equilibrium and Kinetic Parameters. Water (Switzerland), 2021, 13, 1572.	1.2	8
20	Evaluation of Calcium Alginate-Based Biopolymers as Potential Component of Membranes for Recovering Biosurfactants from Corn Steep Water. Water (Switzerland), 2021, 13, 2396.	1.2	1
21	Fruit and vegetable processing wastes as natural sources of antioxidant-rich extracts: Evaluation of advanced extraction technologies by surface response methodology. Journal of Environmental Chemical Engineering, 2021, 9, 105330.	3.3	41
22	Polyphenols and their potential role to fight viral diseases: An overview. Science of the Total Environment, 2021, 801, 149719.	3.9	92
23	Use of Membrane Technologies in Dairy Industry: An Overview. Foods, 2021, 10, 2768.	1.9	27
24	Recovery of Added-Value Compounds from Orange and Spinach Processing Residues: Green Extraction of Phenolic Compounds and Evaluation of Antioxidant Activity. Antioxidants, 2021, 10, 1800.	2.2	17
25	Comparison of acid-resistant ceramic and polymeric nanofiltration membranes for acid mine waters treatment. Chemical Engineering Journal, 2020, 382, 122786.	6.6	39
26	Biodegradability Study of the Biosurfactant Contained in a Crude Extract from Corn Steep Water. Journal of Surfactants and Detergents, 2020, 23, 79-90.	1.0	24
27	Selective Adsorption Capacity of Grape Marc Hydrogel for Adsorption of Binary Mixtures of Dyes. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	6
28	Integration of liquid-liquid membrane contactors and electrodialysis for ammonium recovery and concentration as a liquid fertilizer. Chemosphere, 2020, 245, 125606.	4.2	44
29	Integration of Monopolar and Bipolar Electrodialysis Processes for Tartaric Acid Recovery from Residues of the Winery Industry. ACS Sustainable Chemistry and Engineering, 2020, 8, 13387-13399.	3.2	17
30	Olive Mill and Winery Wastes as Viable Sources of Bioactive Compounds: A Study on Polyphenols Recovery. Antioxidants, 2020, 9, 1074.	2.2	52
31	Extraction, separation and characterization of lipopeptides and phospholipids from corn steep water. Separation and Purification Technology, 2020, 248, 117076.	3.9	30
32	From nanofiltration membrane permeances to design projections for the remediation and valorisation of acid mine waters. Science of the Total Environment, 2020, 738, 139780.	3.9	18
33	Novel Multifunctional Biosurfactant Obtained from Corn as a Stabilizing Agent for Antidandruff Formulations Based on Zn Pyrithione Powder. ACS Omega, 2020, 5, 5704-5712.	1.6	14
34	Biosurfactants: the use of biomolecules in cosmetics and detergents. , 2020, , 163-185.		11
35	Potential application of a multifunctional biosurfactant extract obtained from corn as stabilizing agent of vitamin C in cosmetic formulations. Sustainable Chemistry and Pharmacy, 2020, 16, 100248.	1.6	15
36	Fungistatic and Fungicidal Capacity of a Biosurfactant Extract Obtained from Corn Steep Water. Foods, 2020, 9, 662.	1.9	12

#	Article	IF	CITATIONS
37	Increasing Sustainability on the Metallurgical Industry by Integration of Membrane NF Processes: Acid Recovery. Advances in Science, Technology and Innovation, 2020, , 411-413.	0.2	0
38	Integration of selectrodialysis and solvent-impregnated resins for Zn(II) and Cu(II) recovery from hydrometallurgy effluents containing As(V). Separation and Purification Technology, 2019, 229, 115818.	3.9	26
39	A Multifunctional Biosurfactant Extract Obtained From Corn Steep Water as Bactericide for Agrifood Industry. Foods, 2019, 8, 410.	1.9	28
40	Potential of nanofiltration and reverse osmosis processes for the recovery of high oncentrated furfural streams. Journal of Chemical Technology and Biotechnology, 2019, 94, 2899-2907.	1.6	3
41	Potential use of composts and vermicomposts as low-cost adsorbents for dye removal: an overlooked application. Environmental Science and Pollution Research, 2019, 26, 21085-21097.	2.7	21
42	Preservative and Irritant Capacity of Biosurfactants From Different Sources: A Comparative Study. Journal of Pharmaceutical Sciences, 2019, 108, 2296-2304.	1.6	30
43	Liquid fertilizer production by ammonia recovery from treated ammonia-rich regenerated streams using liquid-liquid membrane contactors. Chemical Engineering Journal, 2019, 360, 890-899.	6.6	75
44	Study of the synergic effect between mica and biosurfactant to stabilize Pickering emulsions containing Vitamin E using a triangular design. Journal of Colloid and Interface Science, 2019, 537, 34-42.	5.0	19
45	Recycled Lactobacillus pentosus biomass can regenerate biosurfactants after various fermentative and extractive cycles. Biochemical Engineering Journal, 2018, 132, 191-195.	1.8	13
46	Industrial Symbiosis Between the Winery and Environmental Industry Through the Utilization of Grape Marc for Water Desalination Containing Copper(II). Water, Air, and Soil Pollution, 2018, 229, 1.	1.1	10
47	Application of selectrodialysis for the removal of As from metallurgical process waters: Recovery of Cu and Zn. Separation and Purification Technology, 2018, 195, 404-412.	3.9	51
48	Design and characterization of greener sunscreen formulations based on mica powder and a biosurfactant extract. Powder Technology, 2018, 327, 442-448.	2.1	36
49	Identification and characterization of phenolic compounds extracted from barley husks by LC-MS and antioxidant activity inÂvitro. Journal of Cereal Science, 2018, 81, 83-90.	1.8	24
50	Bioactivity of glycolipopeptide cell-bound biosurfactants against skin pathogens. International Journal of Biological Macromolecules, 2018, 109, 971-979.	3.6	62
51	Biological Surfactants vs. Polysorbates: Comparison of Their Emulsifier and Surfactant Properties. Tenside, Surfactants, Detergents, 2018, 55, 273-280.	0.5	24
52	Biosurfactants in cosmetic formulations: trends and challenges. Critical Reviews in Biotechnology, 2017, 37, 911-923.	5.1	167
53	Influence of micelle formation on the adsorption capacity of a biosurfactant extracted from corn on dyed hair. RSC Advances, 2017, 7, 16444-16452.	1.7	22
54	Novel cosmetic formulations containing a biosurfactant from Lactobacillus paracasei. Colloids and Surfaces B: Biointerfaces, 2017, 155, 522-529.	2.5	96

#	Article	IF	CITATIONS
55	Vineyard pruning waste as an alternative carbon source to produce novel biosurfactants by Lactobacillus paracasei. Journal of Industrial and Engineering Chemistry, 2017, 55, 40-49.	2.9	53
56	lonic Behavior Assessment of Surface-Active Compounds from Corn Steep Liquor by Exchange Resins. Journal of Surfactants and Detergents, 2017, 20, 207-217.	1.0	21
57	Nutraceuticals and Food Additives. , 2017, , 143-164.		23
58	Biogenic Synthesis of Metal Nanoparticles Using a Biosurfactant Extracted from Corn and Their Antimicrobial Properties. Nanomaterials, 2017, 7, 139.	1.9	42
59	Adsorption of natural surface active compounds obtained from corn on human hair. RSC Advances, 2016, 6, 63064-63070.	1.7	25
60	Evaluation of a cactus mucilage biocomposite to remove total arsenic from water. Environmental Technology and Innovation, 2016, 6, 69-79.	3.0	21
61	A multifunctional extract from corn steep liquor: antioxidant and surfactant activities. Food and Function, 2016, 7, 3724-3732.	2.1	39
62	Kinetic and morphology study of alginate-vineyard pruning waste biocomposite vs. non modified vineyard pruning waste for dye removal. Journal of Environmental Sciences, 2015, 38, 158-167.	3.2	23
63	Selective removal of ATP degradation products from food matrices II: Rapid screening of hypoxanthine and inosine by molecularly imprinted matrix solid-phase dispersion for evaluation of fish freshness. Talanta, 2015, 135, 58-66.	2.9	19
64	Sewage Sludge Polycyclic Aromatic Hydrocarbon (PAH) Decontamination Technique Based on the Utilization of a Lipopeptide Biosurfactant Extracted from Corn Steep Liquor. Journal of Agricultural and Food Chemistry, 2015, 63, 7143-7150.	2.4	22
65	Wastewater treatment enhancement by applying a lipopeptide biosurfactant to a lignocellulosic biocomposite. Carbohydrate Polymers, 2015, 131, 186-196.	5.1	31
66	Heterogenous Lignocellulosic Composites as Bio-Based Adsorbents for Wastewater Dye Removal: a Kinetic Comparison. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	21
67	Optimization of liquid–liquid extraction of biosurfactants from corn steep liquor. Bioprocess and Biosystems Engineering, 2015, 38, 1629-1637.	1.7	54
68	Physicochemical study of a bio-based adsorbent made from grape marc. Ecological Engineering, 2015, 84, 190-193.	1.6	12
69	Optimization of extraction conditions and fatty acid characterization of <i>Lactobacillus pentosus</i> cellâ€bound biosurfactant/bioemulsifier. Journal of the Science of Food and Agriculture, 2015, 95, 313-320.	1.7	68
70	Saltâ€Free Aqueous Extraction of a Cellâ€Bound Biosurfactant: a Kinetic Study. Journal of Surfactants and Detergents, 2015, 18, 267-274.	1.0	19
71	Study of the physical properties of calcium alginate hydrogel beads containing vineyard pruning waste for dye removal. Carbohydrate Polymers, 2015, 115, 129-138.	5.1	51
72	Removal of pigments from aqueous solution by a calcium alginate–grape marc biopolymer: A kinetic study. Carbohydrate Polymers, 2014, 101, 954-960.	5.1	26

#	Article	IF	CITATIONS
73	Elimination of micronutrients from winery wastewater using entrapped grape marc in alginate beads. CYTA - Journal of Food, 2014, 12, 73-79.	0.9	12
74	Treatment of wastewater from sugarcane using entrapped activated carbon. CYTA - Journal of Food, 2014, 12, 189-194.	0.9	4
75	Study of the Surfactant Properties of Aqueous Stream from the Corn Milling Industry. Journal of Agricultural and Food Chemistry, 2014, 62, 5451-5457.	2.4	43
76	Formulation of an alginate-vineyard pruning waste composite as a new eco-friendly adsorbent to remove micronutrients from agroindustrial effluents. Chemosphere, 2014, 111, 24-31.	4.2	32
77	Entrapped Peat in Alginate Beads as Green Adsorbent for the Elimination of Dye Compounds from Vinasses. Water, Air, and Soil Pollution, 2013, 224, 1.	1.1	23
78	Evaluation of biosurfactant obtained from Lactobacillus pentosus as foaming agent in froth flotation. Journal of Environmental Management, 2013, 128, 655-660.	3.8	28
79	Partial Characterization of Biosurfactant from <i>Lactobacillus pentosus</i> and Comparison with Sodium Dodecyl Sulphate for the Bioremediation of Hydrocarbon Contaminated Soil. BioMed Research International, 2013, 2013, 1-6.	0.9	52
80	Study of the Synergistic Effects of Salinity, pH, and Temperature on the Surface-Active Properties of Biosurfactants Produced by <i>Lactobacillus pentosus</i> . Journal of Agricultural and Food Chemistry, 2012, 60, 1258-1265.	2.4	43
81	Optimization of batch operating conditions for the decolourization of vinasses using surface response methodology. Microchemical Journal, 2012, 102, 83-90.	2.3	13
82	Optimization of a dispersive liquid–liquid microextraction method for the analysis of benzotriazoles and benzothiazoles in water samples. Analytical and Bioanalytical Chemistry, 2012, 402, 1679-1695.	1.9	41
83	Valorization of winery waste vs. the costs of not recycling. Waste Management, 2011, 31, 2327-2335.	3.7	261