Ting Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5241431/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ochratoxin A induces liver inflammation: involvement of intestinal microbiota. Microbiome, 2019, 7, 151.	11.1	119
2	Innovative technologies for the mitigation of mycotoxins in animal feed and ingredients—A review of recent patents. Animal Feed Science and Technology, 2016, 216, 19-29.	2.2	104
3	Patulin in Apples and Apple-Based Food Products: The Burdens and the Mitigation Strategies. Toxins, 2018, 10, 475.	3.4	99
4	Occurrence of four mycotoxins in cereal and oil products in Yangtze Delta region of China and their food safety risks. Food Control, 2014, 35, 117-122.	5.5	94
5	Challenges Associated With the Formation of Recombinant Protein Inclusion Bodies in Escherichia coli and Strategies to Address Them for Industrial Applications. Frontiers in Bioengineering and Biotechnology, 2021, 9, 630551.	4.1	94
6	Strategies and Methodologies for Developing Microbial Detoxification Systems to Mitigate Mycotoxins. Toxins, 2017, 9, 130.	3.4	91
7	Toxicology of 3-epi-deoxynivalenol, a deoxynivalenol-transformation product by Devosia mutans 17-2-E-8. Food and Chemical Toxicology, 2015, 84, 250-259.	3.6	90
8	Mitigation of Patulin in Fresh and Processed Foods and Beverages. Toxins, 2017, 9, 157.	3.4	90
9	The enzymatic detoxification of the mycotoxin deoxynivalenol: identification of DepA from the DON epimerization pathway. Microbial Biotechnology, 2018, 11, 1106-1111.	4.2	73
10	Bacterial Epimerization as a Route for Deoxynivalenol Detoxification: the Influence of Growth and Environmental Conditions. Frontiers in Microbiology, 2016, 7, 572.	3.5	69
11	Patulin transformation products and last intermediates in its biosynthetic pathway, E- and Z-ascladiol, are not toxic to human cells. Archives of Toxicology, 2017, 91, 2455-2467.	4.2	69
12	An endophytic fungus isolated from finger millet (Eleusine coracana) produces anti-fungal natural products. Frontiers in Microbiology, 2015, 6, 1157.	3.5	54
13	Comparison of Aqueous Ozone and Chlorine as Sanitizers in the Food Processing Industry: Impact on Fresh Agricultural Produce Quality. Ozone: Science and Engineering, 2007, 29, 113-120.	2.5	51
14	Reduction of Patulin in Apple Juice Products by UV Light of Different Wavelengths in the UVC Range. Journal of Food Protection, 2014, 77, 963-971.	1.7	51
15	The enzymatic epimerization of deoxynivalenol by Devosia mutans proceeds through the formation of 3-keto-DON intermediate. Scientific Reports, 2017, 7, 6929.	3.3	50
16	The Identification of DepB: An Enzyme Responsible for the Final Detoxification Step in the Deoxynivalenol Epimerization Pathway in Devosia mutans 17-2-E-8. Frontiers in Microbiology, 2018, 9, 1573.	3.5	49
17	Control of rhizopus rot of peaches with postharvest treatments of tebuconazole, fludioxonil, and <i>Pseudomonas syringae</i> . Canadian Journal of Plant Pathology, 2002, 24, 144-153.	1.4	48
18	Biological control of postharvest diseases of peach with phyllosphere isolates ofPseudomonas syringae. Canadian Journal of Plant Pathology, 1999, 21, 375-381.	1.4	46

Тімс Zhou

#	Article	IF	CITATIONS
19	Development of biocontrol agents from food microbial isolates for controlling post-harvest peach brown rot caused by Monilinia fructicola. International Journal of Food Microbiology, 2008, 126, 180-185.	4.7	45
20	Postharvest control of blue mold and gray mold on apples using isolates of <i>Pseudomonas syringae</i> . Canadian Journal of Plant Pathology, 2001, 23, 246-252.	1.4	39
21	Microbial detoxification of eleven food and feed contaminating trichothecene mycotoxins. BMC Biotechnology, 2017, 17, 30.	3.3	32
22	Patented Techniques for Detoxification of Mycotoxins in Feeds and Food Matrices. Recent Patents on Food, Nutrition & Agriculture, 2010, 2, 96-104.	0.9	30
23	Interactions betweenPseudomonas syringaeMA-4 and cyprodinil in the control of blue mold and gray mold of apples. Canadian Journal of Plant Pathology, 2002, 24, 154-161.	1.4	29
24	Promising Detoxification Strategies to Mitigate Mycotoxins in Food and Feed. Toxins, 2018, 10, 116.	3.4	28
25	Feasibility of 3D UV-C treatment to reduce fungal growth and mycotoxin loads on maize and wheat kernels. Mycotoxin Research, 2018, 34, 211-221.	2.3	26
26	The Ribosome-Binding Mode of Trichothecene Mycotoxins Rationalizes Their Structure—Activity Relationships. International Journal of Molecular Sciences, 2021, 22, 1604.	4.1	19
27	Beyond Ribosomal Binding: The Increased Polarity and Aberrant Molecular Interactions of 3-epi-deoxynivalenol. Toxins, 2016, 8, 261.	3.4	18
28	Draft Genome Sequences of <i>Devosia</i> sp. Strain 17-2-E-8 and Devosia riboflavina Strain IFO13584. Genome Announcements, 2014, 2, .	0.8	17
29	Patented Techniques for Detoxification of Mycotoxins in Feeds and Food Matrices. Recent Patents on Food, Nutrition & Agriculture, 2010, 2, 96-104.	0.9	16
30	Toxicological and physiological effects of successive exposure to ochratoxin A at food regulatory limits. Food and Chemical Toxicology, 2021, 151, 112128.	3.6	14
31	Formation of glutathione patulin conjugates associated with yeast fermentation contributes to patulin reduction. Food Control, 2021, 123, 107334.	5.5	12
32	UV treatment for degradation of chemical contaminants in food: A review. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 1857-1886.	11.7	12
33	A Novel Microbial Zearalenone Transformation through Phosphorylation. Toxins, 2021, 13, 294.	3.4	9
34	Understanding the Bacterial Response to Mycotoxins: The Transcriptomic Analysis of Deoxynivalenol-Induced Changes in Devosia mutans 17-2-E-8. Frontiers in Pharmacology, 2019, 10, 1098.	3.5	8
35	Genome Assemblies of Three Soil-Associated Devosia species: D. insulae , D. limi , and D. soli. Genome Announcements, 2015, 3, .	0.8	7
36	<i>Saccharomyces cerevisiae</i> YE-7 reduces the risk of apple blue mold disease by inhibiting the fungal incidence and patulin biosynthesis. Journal of Food Processing and Preservation, 2018, 42, e13360.	2.0	6

Тімд Хнои

#	Article	IF	CITATIONS
37	An Efficient Gas Chromatography–Mass Spectrometry Approach for the Simultaneous Analysis of Deoxynivalenol and Its Bacterial Metabolites 3-keto-DON and 3-epi-DON. Journal of Food Protection, 2018, 81, 233-239.	1.7	6
38	Characterization of Two Dehydrogenases from Gluconobacter oxydans Involved in the Transformation of Patulin to Ascladiol. Toxins, 2022, 14, 423.	3.4	6
39	3-keto-DON, but Not 3-epi-DON, Retains the in Planta Toxicological Potential after the Enzymatic Biotransformation of Deoxynivalenol. International Journal of Molecular Sciences, 2022, 23, 7230.	4.1	6
40	Natural Antimicrobials from Plant Essential Oils. ACS Symposium Series, 2007, , 364-387.	0.5	5
41	Insights into the Hydrocarbon Tolerance of Two <i>Devosia</i> Isolates, <i>D. chinhatensis</i> Strain IPL18 ^T and <i>D. geojensis</i> Strain BD-c194 ^T , via Whole-Genome Sequence Analysis. Genome Announcements, 2015, 3, .	0.8	4
42	Employing immuno-affinity for the analysis of various microbial metabolites of the mycotoxin deoxynivalenol. Journal of Chromatography A, 2018, 1556, 81-87.	3.7	4