Raymond P Goodrich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5241383/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Mirasol Evaluation of Reduction in Infections Trial (MERIT): study protocol for a randomized controlled clinical trial. Trials, 2022, 23, 257.	0.7	7
2	Releasates of riboflavin/ UV â€treated platelets: Microvesicles suppress cytokineâ€mediated endothelial cell migration/proliferation. Transfusion, 2021, 61, 1551-1561.	0.8	2
3	A Whole Virion Vaccine for COVID-19 Produced via a Novel Inactivation Method and Preliminary Demonstration of Efficacy in an Animal Challenge Model. Vaccines, 2021, 9, 340.	2.1	16
4	Preservation of neutralizing antibody function in COVIDâ€19 convalescent plasma treated using a riboflavin and ultraviolet lightâ€based pathogen reduction technology. Vox Sanguinis, 2021, 116, 1076-1083.	0.7	11
5	Pilot Acute Safety Evaluation of Innocellâ,,¢ Cancer Immunotherapy in Canine Subjects. Journal of Immunology Research, 2020, 2020, 1-8.	0.9	4
6	A novel cancer immunotherapy utilizing autologous tumour tissue. Vox Sanguinis, 2020, 115, 525-535.	0.7	5
7	Pathogen reduction of SARS-CoV-2 virus in plasma and whole blood using riboflavin and UV light. PLoS ONE, 2020, 15, e0233947.	1.1	94
8	Improved in vitro quality of stored red blood cells upon oxygen reduction prior to riboflavin/UV light treatment of whole blood. Transfusion, 2019, 59, 3197-3204.	0.8	3
9	Commentary for <scp>ISBT</scp> Series—â€~All For One and One For All'. ISBT Science Series, 2019, 14, 257-259.	1.1	0
10	Red Blood Cells Derived from Whole Blood Treated with Riboflavin and UV Light Maintain Adequate Cell Quality through 21 Days of Storage. Transfusion Medicine and Hemotherapy, 2019, 46, 240-247.	0.7	6
11	Ignorance is not bliss. Transfusion, 2018, 58, 615-616.	0.8	3
12	Reflections on the dynamics of bacterial and viral contamination of blood components and the levels of efficacy for pathogen inactivation processes. Transfusion and Apheresis Science, 2018, 57, 683-688.	0.5	9
13	Hemostatic efficacy of pathogen-inactivated vs untreated platelets: a randomized controlled trial. Blood, 2018, 132, 223-231.	0.6	71
14	Special considerations for the use of pathogen reduced blood components in pediatric patients: An overview. Transfusion and Apheresis Science, 2018, 57, 374-377.	0.5	14
15	Photochemical eradication of methicillinâ€resistant <i>Staphylococcus aureus</i> by blue light activation of riboflavin. Acta Ophthalmologica, 2017, 95, 498-502.	0.6	20
16	Red blood cells derived from whole blood treated with riboflavin and ultraviolet light maintain adequate survival in vivo after 21 days of storage. Transfusion, 2017, 57, 1218-1225.	0.8	32
17	Efficiency of riboflavin and ultraviolet light treatment against high levels of biofilmâ€derived <i>Staphylococcus epidermidis</i> in buffy coat platelet concentrates. Vox Sanguinis, 2017, 112, 408-416.	0.7	14
18	Pathogen reduction of whole blood: utility and feasibility. Transfusion Medicine, 2017, 27, 320-326.	0.5	36

#	Article	IF	CITATIONS
19	Reduced <scp>MHC</scp> alloimmunization and partial tolerance protection with pathogen reduction of whole blood. Transfusion, 2017, 57, 337-348.	0.8	18
20	Improving the safety of whole blood-derived transfusion products with a riboflavin-based pathogen reduction technology. Blood Transfusion, 2017, 15, 357-364.	0.3	38
21	Characterization of posttransfusionPlasmodium falciparuminfection in semiâ€immune nonparasitemic patients. Transfusion, 2016, 56, 2374-2383.	0.8	10
22	Riboflavin and ultraviolet light: impact on dengue virus infectivity. Vox Sanguinis, 2016, 111, 235-241.	0.7	29
23	Treatment of blood with a pathogen reduction technology using ultraviolet light and riboflavin inactivates <scp>E</scp> bola virus in vitro. Transfusion, 2016, 56, S6-15.	0.8	39
24	Reduced alloimmunization in mice following repeated transfusion with pathogenâ€reduced platelets. Transfusion, 2016, 56, 1419-1429.	0.8	22
25	Effect of Plasmodium inactivation in whole blood on the incidence of blood transfusion-transmitted malaria in endemic regions: the African Investigation of the Mirasol System (AIMS) randomised controlled trial. Lancet, The, 2016, 387, 1753-1761.	6.3	114
26	Protein translation occurs in platelet concentrates despite riboflavin/UV light pathogen inactivation treatment. Proteomics - Clinical Applications, 2016, 10, 839-850.	0.8	16
27	Riboflavinâ€ultraviolet light pathogen reduction treatment does not impact the immunogenicity of murine red blood cells. Transfusion, 2016, 56, 863-872.	0.8	10
28	The effect of riboflavin and ultraviolet light on the infectivity of arboviruses. Transfusion, 2015, 55, 824-831.	0.8	21
29	Inactivation of viruses in platelet and plasma products using a riboflavinâ€andâ€UV–based photochemical treatment. Transfusion, 2015, 55, 1736-1744.	0.8	38
30	Reduction ofLeishmania donovaniinfectivity in whole blood using riboflavin and ultraviolet light. Transfusion, 2015, 55, 326-329.	0.8	27
31	Large animal evaluation of riboflavin and ultraviolet light–treated whole blood transfusion in a diffuse, nonsurgical bleeding porcine model. Transfusion, 2015, 55, 532-543.	0.8	9
32	Treatment of Whole Blood With Riboflavin and UV Light. Shock, 2015, 44, 33-38.	1.0	30
33	Treatment of Platelet Products with Riboflavin and UV Light: Effectiveness Against High Titer Bacterial Contamination. Journal of Visualized Experiments, 2015, , e52820.	0.2	6
34	Whole blood treated with riboflavin and ultraviolet light: quality assessment of all blood components produced by the buffy coat method. Transfusion, 2015, 55, 815-823.	0.8	33
35	Development of a mitochondrial <scp>DNA</scp> realâ€time polymerase chain reaction assay for quality control of pathogen reduction with riboflavin and ultraviolet light. Vox Sanguinis, 2014, 107, 351-359.	0.7	25
36	Chemical and Biological Mechanisms of Pathogen Reduction Technologies. Photochemistry and Photobiology, 2014, 90, 957-964.	1.3	71

#	Article	IF	CITATIONS
37	Treatment of whole blood with riboflavin plus ultraviolet light, an alternative to gamma irradiation in the prevention of transfusionâ€associated graftâ€versusâ€host disease?. Transfusion, 2013, 53, 373-381.	0.8	72
38	Photochemical inactivation of chikungunya virus in plasma and platelets using the Mirasol pathogen reduction technology system. Transfusion, 2013, 53, 284-290.	0.8	50
39	Riboflavin and ultraviolet light reduce the infectivity of <i>Babesia microti</i> in whole blood. Transfusion, 2013, 53, 860-867.	0.8	35
40	Inactivation of <i><scp>P</scp>lasmodium</i> spp. in plasma and platelet concentrates using riboflavin and ultraviolet light. Transfusion, 2013, 53, 2278-2286.	0.8	28
41	Plasma constituent integrity in pre-storage vs. post-storage riboflavin and UV-light treatment – A comparative study. Transfusion and Apheresis Science, 2013, 49, 434-439.	0.5	12
42	Development of a riboflavin and ultraviolet lightâ€based device to treat whole blood. Transfusion, 2013, 53, 131S-136S.	0.8	35
43	Primary hemostatic capacity of whole blood: a comprehensive analysis of pathogen reduction and refrigeration effects over time. Transfusion, 2013, 53, 137S-149S.	0.8	171
44	Riboflavin and ultraviolet light treatment of platelets triggers <scp>p</scp> 38 <scp>MAPK</scp> signaling: inhibition significantly improves in vitro platelet quality after pathogen reduction treatment. Transfusion, 2013, 53, 3164-3173.	0.8	43
45	Immune modulation and lack of alloimmunization following transfusion with pathogenâ€reduced platelets in mice. Transfusion, 2013, 53, 2697-2709.	0.8	33
46	A pilot study to assess the hemostatic function of pathogenâ€reduced platelets in patients with thrombocytopenia. Transfusion, 2013, 53, 2043-2052.	0.8	18
47	Pathogen Reduction Technologies. , 2013, , 295-300.		0
48	Fresh Whole Blood Use for Hemorrhagic Shock. Anesthesia and Analgesia, 2012, 115, 751-758.	1.1	39
49	Quality of proteins in riboflavin and UV light-treated FFP during 1year of storage at â^'18°C. Transfusion and Apheresis Science, 2012, 46, 15-18.	0.5	5
50	Preparation of cryoprecipitate from riboflavin and UV light-treated plasma. Transfusion and Apheresis Science, 2012, 46, 153-158.	0.5	23
51	In response to Morrisonâ€McKell and wehrli. Journal of Clinical Apheresis, 2012, 27, 346-347.	0.7	0
52	In Reply to: "Is the SCID mouse model applicable to human acute lung injury?― Transfusion, 2012, 52, 2489-2492.	0.8	1
53	Evaluating pathogen reduction of <i>Trypanosoma cruzi</i> with riboflavin and ultraviolet light for whole blood. Transfusion, 2012, 52, 409-416.	0.8	40
54	Establishment of the first International Repository for Transfusionâ€Relevant Bacteria Reference Strains: ISBT Working Party Transfusionâ€Transmitted Infectious Diseases (WPâ€TTID), Subgroup on Bacteria. Vox Sanguinis, 2012, 102, 22-31.	0.7	44

#	Article	IF	CITATIONS
55	In vitro quality of singleâ€donor platelets treated with riboflavin and ultraviolet light and stored in platelet storage medium for up to 8 days. Transfusion, 2012, 52, 983-994.	0.8	26
56	The utility of pathogen inactivation technology: a real-life example of Leishmania infantum inactivation in platelets from a donor with an asymptomatic infection. Blood Transfusion, 2012, 10, 536-41.	0.3	12
57	Protein stability of previously frozen plasma, riboflavin and UV light-treated, refrozen and stored for up to 2years at Ⱂ30°C. Transfusion and Apheresis Science, 2011, 44, 25-31.	0.5	11
58	Improving blood safety and patient outcomes with pathogen reduction technology. Transfusion and Apheresis Science, 2011, 45, 229-238.	0.5	5
59	The effect of pathogen reduction technology (Mirasol) on platelet quality when treated in additive solution with low plasma carryover. Vox Sanguinis, 2011, 101, 208-214.	0.7	45
60	Hemostatic function of buffy coat platelets in additive solution treated with pathogen reduction technology. Transfusion, 2011, 51, 344-356.	0.8	46
61	Impact of pathogen reduction technology and storage in platelet additive solutions on platelet function. Transfusion, 2011, 51, 808-815.	0.8	41
62	Generation of neutrophil priming activity by cellâ€containing blood components treated with pathogen reduction technology and stored in platelet additive solutions. Transfusion, 2011, 51, 1220-1227.	0.8	10
63	In vivo viability of stored red blood cells derived from riboflavin plus ultraviolet light–treated whole blood. Transfusion, 2011, 51, 1460-1468.	0.8	47
64	Pathogen Reduction Technology Treatment of Platelets, Plasma and Whole Blood Using Riboflavin and UV Light. Transfusion Medicine and Hemotherapy, 2011, 38, 8-18.	0.7	183
65	Evaluation of the Mirasol platelet reduction technology system against <i>Babesia microti</i> in apheresis platelets and plasma. Transfusion, 2010, 50, 1019-1027.	0.8	52
66	Design and development of a method for the reduction of infectious pathogen load and inactivation of white blood cells in whole blood products. Biologicals, 2010, 38, 20-30.	0.5	75
67	Defining "adequate―pathogen reduction performance for transfused blood components. Transfusion, 2010, 50, 1827-1837.	0.8	37
68	In vitro cell quality of buffy coat platelets in additive solution treated with pathogen reduction technology. Transfusion, 2010, 50, 2210-2219.	0.8	43
69	A randomized controlled clinical trial evaluating the performance and safety of platelets treated with MIRASOL pathogen reduction technology. Transfusion, 2010, 50, 2362-2375.	0.8	148
70	White blood cell inactivation after treatment with riboflavin and ultraviolet light. Transfusion, 2010, 50, 2489-2498.	0.8	85
71	Characterization of plasma protein activity in riboflavin and UV light-treated fresh frozen plasma during 2 years of storage at â´Â`30Ã,°C. Vox Sanguinis, 2010, 98, 108-115.	0.7	31
72	Evaluation of Different Preparation Procedures of Pathogen Reduction Technology(Mirasol®)-Treated Platelets Collected by Plateletpheresis. Transfusion Medicine and Hemotherapy, 2009, 36, 309-315.	0.7	10

#	Article	IF	CITATIONS
73	Pathogen reduction technology (Mirasol [®]) treated singleâ€donor platelets resuspended in a mixture of autologous plasma and PAS. Vox Sanguinis, 2009, 97, 234-239.	0.7	38
74	Evaluation of potential immune response and in vivo survival of riboflavinâ€ultraviolet light–treated red blood cells in baboons. Transfusion, 2009, 49, 64-74.	0.8	16
75	A laboratory comparison of pathogen reduction technology treatment and culture of platelet products for addressing bacterial contamination concerns. Transfusion, 2009, 49, 1205-1216.	0.8	77
76	IMMUNOHEMATOLOGY: Understanding loss of donor white blood cell immunogenicity after pathogen reduction: mechanisms of action in ultraviolet illumination and riboflavin treatment. Transfusion, 2009, 49, 2686-2699.	0.8	36
77	BLOOD COMPONENTS: Lack of antibody formation to platelet neoantigens after transfusion of riboflavin and ultraviolet light–treated platelet concentrates. Transfusion, 2009, 49, 2631-2636.	0.8	21
78	Toxicity Testing of a Novel Riboflavin-Based Technology for Pathogen Reduction and White Blood Cell Inactivation. Transfusion Medicine Reviews, 2008, 22, 133-153.	0.9	126
79	Reduction of prion infectivity in packed red blood cells. Biochemical and Biophysical Research Communications, 2008, 377, 373-378.	1.0	21
80	Treatment With Riboflavin and Ultraviolet Light Prevents Alloimmunization to Platelet Transfusions and Cardiac Transplants. Transplantation, 2007, 84, 1174-1182.	0.5	63
81	Pathogen inactivation of Trypanosoma cruzi in plasma and platelet concentrates using riboflavin and ultraviolet light. Transfusion and Apheresis Science, 2007, 37, 131-137.	0.5	74
82	Inactivation of Orientia tsutsugamushi in red blood cells, plasma, and platelets with riboflavin and light, as demonstrated in an animal model. Transfusion, 2007, 47, 240-247.	0.8	39
83	The Mirasolâ"¢ PRT system for pathogen reduction of platelets and plasma: An overview of current status and future trends. Transfusion and Apheresis Science, 2006, 35, 5-17.	0.5	180
84	Pathogen inactivation of Leishmania donovani infantum in plasma and platelet concentrates using riboflavin and ultraviolet light. Vox Sanguinis, 2006, 90, 85-91.	0.7	97
85	Correlation of in vitro platelet quality measurements with in vivo platelet viability in human subjects. Vox Sanguinis, 2006, 90, 279-285.	0.7	108
86	Functional inactivation of white blood cells by Mirasol treatment. Transfusion, 2006, 46, 642-648.	0.8	74
87	Mirasol PRT treatment of donor white blood cells prevents the development of xenogeneic graft-versus-host disease in Rag2?/??c?/?double knockout mice. Transfusion, 2006, 46, 1553-1560.	0.8	51
88	Comparison of computerized formulae for determination of platelet recovery and survival. Transfusion, 2005, 45, 1237-1239.	0.8	4
89	Efficacy of apheresis platelets treated with riboflavin and ultraviolet light for pathogen reduction. Transfusion, 2005, 45, 1335-1341.	0.8	147
90	Platelet glycolytic flux increases stimulated by ultraviolet-induced stress is not the direct cause of platelet morphology and activation changes: possible implications for the role of glucose in platelet storage. Transfusion, 2005, 45, 1750-1758.	0.8	30

#	Article	IF	CITATIONS
91	Effects of a new pathogen-reduction technology (Mirasol PRT) on functional aspects of platelet concentrates. Transfusion, 2005, 45, 911-919.	0.8	108
92	Evaluation of platelet mitochondria integrity after treatment with Mirasol pathogen reduction technology. Transfusion, 2005, 45, 920-926.	0.8	47
93	An Action Spectrum of the Riboflavin-photosensitized Inactivation of Lambda Phage¶. Photochemistry and Photobiology, 2005, 81, 474.	1.3	22
94	An Action Spectrum of the Riboflavinâ€photosensitized Inactivation of Lambda Phage [¶] . Photochemistry and Photobiology, 2005, 81, 474-480.	1.3	2
95	Separation, Identification and Quantification of Riboflavin and its Photoproducts in Blood Products using High-performance Liquid Chromatography with Fluorescence Detection: A Method to Support Pathogen Reduction Technology¶. Photochemistry and Photobiology, 2004, 80, 609.	1.3	34
96	Pathogen reduction of buffy coat platelet concentrates using riboflavin and light: comparisons with pathogen-reduction technology-treated apheresis platelet products. Vox Sanguinis, 2004, 87, 82-90.	0.7	78
97	Photochemical inactivation of selected viruses and bacteria in platelet concentrates using riboflavin and light. Transfusion, 2004, 44, 877-885.	0.8	304
98	Riboflavin and UVâ€Light Based Pathogen Reduction: Extent and Consequence of DNA Damage at the Molecular Level. Photochemistry and Photobiology, 2004, 80, 15-21.	1.3	13
99	Separation, Identification and Quantification of Riboflavin and its Photoproducts in Blood Products using Highâ€performance Liquid Chromatography with Fluorescence Detection: A Method to Support Pathogen Reduction Technology [¶] . Photochemistry and Photobiology, 2004, 80, 609-615.	1.3	2
100	Riboflavin and UV-Light Based Pathogen Reduction: Extent and Consequence of DNA Damage at the Molecular Level. Photochemistry and Photobiology, 2004, 80, 15.	1.3	203
101	Separation, Identification and Quantification of Riboflavin and its Photoproducts in Blood Products using HPLC with Fluorescence Detection: A Method to Support Pathogen Reduction Technology. Photochemistry and Photobiology, 2004, 80, 609-15.	1.3	11
102	An Action Spectrum of the Riboflavin Photosensitized Inactivation of Lambda Phage. Photochemistry and Photobiology, 2004, 81, 474-80.	1.3	8
103	The design and development of selective, photoactivated drugs for sterilization of blood products. Drugs of the Future, 1997, 22, 159.	0.0	18
104	Measurement of Transmitted Light as an Indicator of Cryopreserved Platelet Viability. Pathophysiology of Haemostasis and Thrombosis: International Journal on Haemostasis and Thrombosis Research, 1996, 26, 107-116.	0.5	0
105	Photochemical and Photophysical Studies of 3â€Aminoâ€6â€lodoacridine and the Inactivation of λ Phage. Photochemistry and Photobiology, 1996, 64, 622-631.	1.3	11
106	Survival of lyophilized and reconstituted human red blood cells in vivo. Transfusion Clinique Et Biologique, 1995, 2, 427-432.	0.2	8
107	Selective inactivation of viruses in the presence of human platelets: UV sensitization with psoralen derivatives Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 5552-5556.	3.3	34
108	DRAMATIC IMPROVEMENTS IN VIRAL INACTIVATION WITH BROMINATED PSORALENS, NAPHTHALENES AND ANTHRACENES. Photochemistry and Photobiology, 1993, 58, 59-65.	1.3	24

#	Article	IF	CITATIONS
109	Refrigerated storage of lyophilized and rehydrated, lyophilized human red cells. Transfusion, 1993, 33, 322-329.	0.8	26
110	Preservation of metabolic activity in lyophilized human erythrocytes Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 967-971.	3.3	72
111	EPR spectroscopy of triplet aryl nitrenes covalently bound to .alphachymotrypsin. Application of low-temperature methods to photoaffinity labeling. Journal of the American Chemical Society, 1988, 110, 6536-6541.	6.6	23
112	Spectroscopy Of Nitrenes Bound To â [•] Chymotrypsin. Proceedings of SPIE, 1988, 0847, 57.	0.8	1
113	Vitamin B2 and Innovations in Improving Blood Safety. , 0, , .		0
114	Chapter 5. The Antiviral and Antibacterial Properties of Riboflavin and Light: Applications To Blood Safety and Transfusion Medicine. Comprehensive Series in Photochemical and Photobiological Sciences, 0, , 83-113.	0.3	7