Rong-Chang Zeng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5241345/publications.pdf

Version: 2024-02-01

		25014	37183
177	10,959	57	96
papers	citations	h-index	g-index
182	182	182	5465
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Degradation and biocompatibility of one-step electrodeposited magnesium thioctic acid/magnesium hydroxide hybrid coatings on ZE21B alloys for cardiovascular stents. Journal of Magnesium and Alloys, 2024, 12, 120-138.	5.5	3
2	Corrosion resistance of Mg-Al-LDH steam coating on AZ80 Mg alloy: Effects of citric acid pretreatment and intermetallic compounds. Journal of Magnesium and Alloys, 2023, 11, 2967-2979.	5 . 5	6
3	In vitro degradation and multi-antibacterial mechanisms of \hat{l}^2 -cyclodextrin@curcumin embodied Mg(OH)2/MAO coating on AZ31 magnesium alloy. Journal of Materials Science and Technology, 2023, 132, 179-192.	5.6	27
4	Protein conformation and electric attraction adsorption mechanisms on anodized magnesium alloy by molecular dynamics simulations. Journal of Magnesium and Alloys, 2022, 10, 3143-3155.	5 . 5	12
5	Corrosion resistance of the layer-by-layer assembled multilayers on Mg alloy: Effects of covalent cross-linking. Materials Letters, 2022, 308, 131165.	1.3	2
6	Corrosion self-diagnosing and self-repairing polymeric coatings based on zeolitic imidazolate framework decorated hydroxyapatite nanocontainer on steel. Chemical Engineering Journal, 2022, 431, 133476.	6.6	11
7	Enhanced corrosion resistance, antibacterial activity and biocompatibility of gentamicin-montmorillonite coating on Mg alloy-in vitro and in vivo studies. Journal of Materials Science and Technology, 2022, 111, 167-180.	5.6	26
8	Polyphosphate assisted hydrothermal synthesis of hydroxyapatite coating on Mg alloys: Enhanced mechanical properties and corrosion resistance. Surface and Coatings Technology, 2022, 432, 128033.	2.2	6
9	MAO-Based Composite Coatings. , 2022, , 489-508.		1
10	Recent Approaches for Enhancing Corrosion Resistance of PEO/MAO-Coated Mg and Its Alloys. , 2022, , 465-488.		2
11	Advances in hydroxyapatite coatings on biodegradable magnesium and its alloys. Journal of Magnesium and Alloys, 2022, 10, 1154-1170.	5.5	45
12	Advances in bioorganic molecules inspired degradation and surface modifications on Mg and its alloys. Journal of Magnesium and Alloys, 2022, 10, 670-688.	5 . 5	33
13	Anti–corrosion and self-healing coatings with polyaniline/epoxy copolymer–urea–formaldehyde microcapsules for rusty steel sheets. Journal of Colloid and Interface Science, 2022, 616, 605-617.	5.0	24
14	In vitro degradation, photo-dynamic and thermal antibacterial activities of Cu-bearing chlorophyllin-induced Ca–P coating on magnesium alloy AZ31. Bioactive Materials, 2022, 18, 284-299.	8.6	29
15	Corrosion self-warning and repair tracking of polymeric coatings based on stimulus responsive nanosensors. Nanoscale, 2022, 14, 8429-8440.	2.8	10
16	In vitro degradation and biocompatibility of vitamin C loaded Ca-P coating on a magnesium alloy for bioimplant applications. Corrosion Communications, 2022, 6, 16-28.	2.7	7
17	In vitro degradation resistance of glucose and L-cysteine-bioinspired Schiff-base anodic Ca–P coating on AZ31 magnesium alloy. Transactions of Nonferrous Metals Society of China, 2022, 32, 1485-1500.	1.7	9
18	Corrosion Resistance and Durability of Superhydrophobic Coating on AZ31 Mg Alloy via One-Step Electrodeposition. Acta Metallurgica Sinica (English Letters), 2021, 34, 25-38.	1.5	36

#	Article	IF	CITATIONS
19	In vitro corrosion resistance, antibacterial activity and cytocompatibility of a layer-by-layer assembled DNA coating on magnesium alloy. Journal of Magnesium and Alloys, 2021, 9, 266-280.	5.5	37
20	Advances in layer-by-layer self-assembled coatings upon biodegradable magnesium alloys. Science China Materials, 2021, 64, 2093-2106.	3.5	37
21	Corrosion Resistance of Superhydrophobic Mg(OH)2/Calcium Myristate Composite Coating on Magnesium Alloy AZ31. Acta Metallurgica Sinica (English Letters), 2021, 34, 1618-1634.	1.5	10
22	Corrosion resistance of Ca-P coating induced by layer-by-layer assembled polyvinylpyrrolidone/DNA multilayer on magnesium AZ31 alloy. Frontiers of Materials Science, 2021, 15, 391-405.	1.1	7
23	Dealloying corrosion of anodic and nanometric Mg41Nd5 in solid solution-treated Mg-3Nd-1Li-0.2Zn alloy. Journal of Materials Science and Technology, 2021, 83, 161-178.	5.6	49
24	Corrosion resistance, antibacterial activity and drug release of ciprofloxacin-loaded micro-arc oxidation/silane coating on magnesium alloy AZ31. Progress in Organic Coatings, 2021, 158, 106357.	1.9	14
25	Insight to corrosion mechanism of 90/10 copper-nickel alloys under different sea depths. Materials Letters, 2021, 303, 130513.	1.3	13
26	Advances in coatings on magnesium alloys for cardiovascular stents – A review. Bioactive Materials, 2021, 6, 4729-4757.	8.6	93
27	Corrosion resistance and tunable release of ciprofloxacin-loaded multilayers on magnesium alloy: Effects of SiO2 nanoparticles. Applied Surface Science, 2020, 508, 145240.	3.1	21
28	Corrosion resistance of self-cleaning silane/polypropylene composite coatings on magnesium alloy AZ31. Journal of Materials Science and Technology, 2020, 41, 43-55.	5.6	80
29	Corrosion resistance of one-step superhydrophobic polypropylene coating on magnesium hydroxide-pretreated magnesium alloy AZ31. Journal of Alloys and Compounds, 2020, 821, 153515.	2.8	44
30	Corrosion resistance of dodecanethiol-modified magnesium hydroxide coating on AZ31 magnesium alloy. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	24
31	Layer-by-layer assembly of gentamicin-based antibacterial multilayers on Ti alloy. Materials Letters, 2020, 261, 127001.	1.3	14
32	Biocorrosion resistance and biocompatibility of Mg-Al layered double hydroxide/poly(L-lactic acid) hybrid coating on magnesium alloy AZ31. Frontiers of Materials Science, 2020, 14, 426-441.	1.1	10
33	Synthesis of glutamate intercalated Mg-Al layered double hydroxides: influence of stirring and aging time. Journal of Dispersion Science and Technology, 2020, , 1-9.	1.3	2
34	Corrosion resistance and superhydrophobicity of one-step polypropylene coating on anodized AZ31 Mg alloy. Journal of Magnesium and Alloys, 2020, 9, 1443-1443.	5.5	59
35	Self-catalytic degradation of iron-bearing chemical conversion coating on magnesium alloys — Influence of Fe content. Frontiers of Materials Science, 2020, 14, 296-313.	1.1	9
36	Biodegradation behavior of micro-arc oxidation coating on magnesium alloy-from a protein perspective. Bioactive Materials, 2020, 5, 398-409.	8.6	92

3

#	Article	IF	CITATIONS
37	Biocorrosion resistance and biocompatibility of Mg–Al layered double hydroxide/poly-L-glutamic acid hybrid coating on magnesium alloy AZ31. Progress in Organic Coatings, 2020, 147, 105746.	1.9	22
38	A tripleâ€layered hybrid coating with selfâ€organized microporous polymer film on magnesium for biodegradable implant applications. Medical Devices & Sensors, 2020, 3, e10070.	2.7	4
39	In vitro degradation of pure magnesium―the synergetic influences of glucose and albumin. Bioactive Materials, 2020, 5, 318-333.	8.6	50
40	Corrosion resistance of an amino acid-bioinspired calcium phosphate coating on magnesium alloy AZ31. Journal of Materials Science and Technology, 2020, 49, 224-235.	5.6	49
41	Microbial ingress and in vitro degradation enhanced by glucose on bioabsorbable Mg–Li–Ca alloy. Bioactive Materials, 2020, 5, 902-916.	8.6	12
42	Durable lubricant-infused coating on a magnesium alloy substrate with anti-biofouling and anti-corrosion properties and excellent thermally assisted healing ability. Nanoscale, 2020, 12, 7700-7711.	2.8	47
43	Advances in coatings on biodegradable magnesium alloys. Journal of Magnesium and Alloys, 2020, 8, 42-65.	5.5	274
44	In vitro and in vivo biodegradation and biocompatibility of an MMT/BSA composite coating upon magnesium alloy AZ31. Journal of Materials Science and Technology, 2020, 47, 52-67.	5.6	55
45	Corrosion resistance and electrical conductivity of a nano ATO-doped MAO/methyltrimethoxysilane composite coating on magnesium alloy AZ31. Corrosion Science, 2020, 168, 108570.	3.0	46
46	In vitro corrosion resistance of layer-by-layer assembled polyacrylic acid multilayers induced Ca–P coating on magnesium alloy AZ31. Bioactive Materials, 2020, 5, 153-163.	8.6	48
47	Mo-V-Nb-O-based catalysts for low-temperature selective oxidation of Cα-OH lignin model compounds. Frontiers of Materials Science, 2020, 14, 52-61.	1.1	2
48	In vitro corrosion resistance of a Ta2O5 nanofilm on MAO coated magnesium alloy AZ31 by atomic layer deposition. Bioactive Materials, 2020, 5, 34-43.	8.6	61
49	Biodegradation, hemocompatibility and covalent bonding mechanism of electrografting polyethylacrylate coating on Mg alloy for cardiovascular stent. Journal of Materials Science and Technology, 2020, 46, 114-126.	5.6	28
50	In vitro degradation and cytocompatibility of a low temperature in-situ grown self-healing Mg-Al LDH coating on MAO-coated magnesium alloy AZ31. Bioactive Materials, 2020, 5, 364-376.	8.6	90
51	Advance in Antibacterial Magnesium Alloys and Surface Coatings on Magnesium Alloys: A Review. Acta Metallurgica Sinica (English Letters), 2020, 33, 615-629.	1.5	80
52	Corrosion resistance of Mgâ^Al LDH/Mg(OH)2/silaneâ^Ce hybrid coating on magnesium alloy AZ31. Transactions of Nonferrous Metals Society of China, 2020, 30, 2967-2979.	1.7	45
53	In vitro and in vivo investigation on biodegradable Mg-Li-Ca alloys for bone implant application. Science China Materials, 2019, 62, 256-272.	3. 5	39
54	Corrosion resistance of copolymerization of acrylamide and acrylic acid grafted graphene oxide composite coating on magnesium alloy. Progress in Organic Coatings, $2019,136,105222.$	1.9	23

#	Article	IF	CITATIONS
55	In vitro corrosion of pure Mg in phosphate buffer solutionâ€"Influences of isoelectric point and molecular structure of amino acids. Materials Science and Engineering C, 2019, 105, 110042.	3.8	33
56	Corrosion and Wear Resistance of Microâ€Arc Oxidation Composite Coatings on Magnesium Alloy AZ31—The Influence of Inclusions of Carbon Spheres. Advanced Engineering Materials, 2019, 21, 1900446.	1.6	38
57	Corrosion resistance and antibacterial activity of hydroxyapatite coating induced by ciprofloxacin-loaded polymeric multilayers on magnesium alloy. Progress in Organic Coatings, 2019, 135, 465-474.	1.9	53
58	Corrosion resistance and antibacterial activity of zinc-loaded montmorillonite coatings on biodegradable magnesium alloy AZ31. Acta Biomaterialia, 2019, 98, 196-214.	4.1	114
59	Corrosion resistance of a silane/ceria modified Mg-Al-layered double hydroxide on AA5005 aluminum alloy. Frontiers of Materials Science, 2019, 13, 420-430.	1.1	13
60	Corrosion resistance of in-situ growth of nano-sized Mg(OH)2 on micro-arc oxidized magnesium alloy AZ31—Influence of EDTA. Journal of Materials Science and Technology, 2019, 35, 1088-1098.	5.6	86
61	Fe-doped Ag2S with excellent peroxidase-like activity for colorimetric determination of H2O2. Journal of Alloys and Compounds, 2019, 785, 1189-1197.	2.8	84
62	Graphene Oxide Reinforced Iron Matrix Composite With Enhanced Biodegradation Rate Prepared by Selective Laser Melting. Advanced Engineering Materials, 2019, 21, 1900314.	1.6	17
63	New strategy of improving the dispersibility of acrylamide-functionalized graphene oxide in aqueous solution by RAFT copolymerization of acrylamide and acrylic acid. European Polymer Journal, 2019, 117, 148-158.	2.6	22
64	Electrochemical polymerization of dopamine with/without subsequent PLLA coating on Mg-Zn-Y-Nd alloy. Materials Letters, 2019, 252, 202-206.	1.3	19
65	Corrosion resistance of Mg(OH)2/Mg–Al-layered double hydroxide coatings on magnesium alloy AZ31: influence of hydrolysis degree of silane. Rare Metals, 2019, 38, 629-641.	3.6	52
66	Deflated balloon-like nitrogen-rich sulfur-containing hierarchical porous carbons for high-rate supercapacitors. Applied Surface Science, 2019, 484, 716-725.	3.1	7
67	Corrosion resistance and drug release profile of gentamicin-loaded polyelectrolyte multilayers on magnesium alloys: Effects of heat treatment. Journal of Colloid and Interface Science, 2019, 547, 309-317.	5.0	43
68	Interfacial study of the formation mechanism of corrosion resistant strontium phosphate coatings upon Mg-3Al-4.3Ca-0.1Mn. Corrosion Science, 2019, 151, 143-153.	3.0	40
69	Corrosion resistance and antibacterial properties of hydroxyapatite coating induced by gentamicin-loaded polymeric multilayers on magnesium alloys. Colloids and Surfaces B: Biointerfaces, 2019, 179, 429-436.	2.5	73
70	Fundamental Theory of Biodegradable Metalsâ€"Definition, Criteria, and Design. Advanced Functional Materials, 2019, 29, 1805402.	7.8	226
71	Corrosion resistance of nanostructured magnesium hydroxide coating on magnesium alloy AZ31: influence of EDTA. Rare Metals, 2019, 38, 520-531.	3.6	45
72	Corrosion resistance of bioinspired DNA-induced Ca–P coating on biodegradable magnesium alloy. Journal of Magnesium and Alloys, 2019, 7, 144-154.	5 . 5	68

#	Article	IF	CITATIONS
73	In vitro corrosion resistance and antibacterial performance of novel tin dioxide-doped calcium phosphate coating on degradable Mg-1Li-1Ca alloy. Journal of Materials Science and Technology, 2019, 35, 254-265.	5.6	57
74	Corrosion resistance of a self-healing multilayer film based on SiO2 and CeO2 nanoparticles layer-by-layer assembly on Mg alloys. Materials Letters, 2019, 237, 14-18.	1.3	56
75	Corrosion resistance and antibacterial effects of hydroxyapatite coating induced by polyacrylic acid and gentamicin sulfate on magnesium alloy. Frontiers of Materials Science, 2019, 13, 87-98.	1.1	33
76	Enhanced peroxidaseâ€like activity of MMTâ€supported cuprous oxide nanocomposites toward rapid colorimetric estimation of H ₂ O ₂ . Applied Organometallic Chemistry, 2019, 33, e4716.	1.7	18
77	Influence of solution treatment on the corrosion fatigue behavior of an as-forged Mg-Zn-Y-Zr alloy. International Journal of Fatigue, 2019, 120, 46-55.	2.8	110
78	Optimized preparation of Co-Pi decorated g-C3N4@ZnO shell-core nanorod array for its improved photoelectrochemical performance and stability. Journal of Alloys and Compounds, 2019, 780, 540-551.	2.8	26
79	Recent advances in biodegradation controls over Mg alloys for bone fracture management: A review. Journal of Materials Science and Technology, 2019, 35, 535-544.	5.6	171
80	Corrosion resistance of glucose-induced hydrothermal calcium phosphate coating on pure magnesium. Applied Surface Science, 2019, 465, 1066-1077.	3.1	97
81	Enhanced visible light-driven activity of TiO2 nanotube array photoanode co-sensitized by "green― AgInS2 photosensitizer and In2S3 buffer layer. Electrochimica Acta, 2018, 269, 429-440.	2.6	54
82	Corrosion resistance and antibacterial properties of polysiloxane modified layer-by-layer assembled self-healing coating on magnesium alloy. Journal of Colloid and Interface Science, 2018, 526, 43-50.	5.0	104
83	A comparison of corrosion inhibition of magnesium aluminum and zinc aluminum vanadate intercalated layered double hydroxides on magnesium alloys. Frontiers of Materials Science, 2018, 12, 198-206.	1.1	44
84	Effectively enhanced photocatalytic hydrogen production performance of one-pot synthesized MoS2 clusters/CdS nanorod heterojunction material under visible light. Chemical Engineering Journal, 2018, 345, 404-413.	6.6	128
85	Layered double hydroxide coatings on magnesium alloys: A review. Journal of Materials Science and Technology, 2018, 34, 1455-1466.	5.6	186
86	Self-degradation of micro-arc oxidation/chitosan composite coating on Mg-4Li-1Ca alloy. Surface and Coatings Technology, 2018, 344, 1-11.	2.2	104
87	Research Progress of Grapheneâ€Based Rubber Nanocomposites. Polymer Composites, 2018, 39, 1006-1022.	2.3	36
88	Corrosion Resistance of Silane-Modified Hydroxyapatite Films on Degradable Magnesium Alloys. Acta Metallurgica Sinica (English Letters), 2018, 31, 180-188.	1.5	34
89	Corrosion resistance of a novel SnO2-doped dicalcium phosphate coating on AZ31 magnesium alloy. Bioactive Materials, 2018, 3, 245-249.	8.6	32
90	Corrosion resistance and adhesion strength of a spin-assisted layer-by-layer assembled coating on AZ31 magnesium alloy. Applied Surface Science, 2018, 434, 787-795.	3.1	82

#	Article	IF	CITATIONS
91	In vitro degradation and biocompatibility of Mg-Li-Ca alloysâ€"the influence of Li content. Science China Materials, 2018, 61, 607-618.	3.5	38
92	In Vitro Corrosion and Antibacterial Performance of Micro-Arc Oxidation Coating on AZ31 Magnesium Alloy: Effects of Tannic Acid. Journal of the Electrochemical Society, 2018, 165, C821-C829.	1.3	38
93	Exfoliation corrosion of extruded Mg-Li-Ca alloy. Journal of Materials Science and Technology, 2018, 34, 1550-1557.	5. 6	84
94	In vitro corrosion resistance of a layer-by-layer assembled DNA coating on magnesium alloy. Applied Surface Science, 2018, 457, 49-58.	3.1	57
95	Corrosion resistance of a ceria/polymethyltrimethoxysilane modified Mg-Al-layered double hydroxide on AZ31 magnesium alloy. Journal of Alloys and Compounds, 2018, 764, 913-928.	2.8	88
96	Study on the Mechanism of the Photoelectrochemical Effect on the Initial NaCl-Induced Atmospheric Corrosion Process of Pure Copper Exposed in Humidified Pure Air. Journal of the Electrochemical Society, 2018, 165, C608-C617.	1.3	21
97	In vitro corrosion of magnesium alloy AZ31 â€" a synergetic influence of glucose and Tris. Frontiers of Materials Science, 2018, 12, 184-197.	1.1	32
98	Advances in functionalized polymer coatings on biodegradable magnesium alloys – A review. Acta Biomaterialia, 2018, 79, 23-36.	4.1	338
99	InÂvitro corrosion of micro-arc oxidation coating on Mg-1Li-1Ca alloy â€" The influence of intermetallic compound Mg2Ca. Journal of Alloys and Compounds, 2018, 764, 250-260.	2.8	95
100	New insights into the effect of Tris-HCl and Tris on corrosion of magnesium alloy in presence of bicarbonate, sulfate, hydrogen phosphate and dihydrogen phosphate ions. Journal of Materials Science and Technology, 2017, 33, 971-986.	5.6	49
101	Corrosion resistance of a self-healing micro-arc oxidation/polymethyltrimethoxysilane composite coating on magnesium alloy AZ31. Corrosion Science, 2017, 118, 84-95.	3.0	335
102	Photogenerated cathodic protection and invalidation of silane/TiO2 hybrid coatings. Journal of Coatings Technology Research, 2017, 14, 417-424.	1.2	12
103	In vitro corrosion resistance and antibacterial properties of layer-by-layer assembled chitosan/poly-L-glutamic acid coating on AZ31 magnesium alloys. Transactions of Nonferrous Metals Society of China, 2017, 27, 1081-1086.	1.7	47
104	Electrodeposition of TiO 2 layer-by-layer assembled composite coating and silane treatment on Mg alloy for corrosion resistance. Surface and Coatings Technology, 2017, 324, 560-568.	2.2	46
105	Constructing ternary polyaniline-graphene-TiO2 hybrids with enhanced photoelectrochemical performance in photo-generated cathodic protection. Applied Surface Science, 2017, 410, 547-556.	3.1	73
106	Corrosion resistance of a superhydrophobic micro-arc oxidation coating on Mg-4Li-1Ca alloy. Journal of Materials Science and Technology, 2017, 33, 1263-1271.	5 . 6	84
107	Corrosion resistance of ceria/polymethyltrimethoxysilane modified magnesium hydroxide coating on AZ31 magnesium alloy. Surface and Coatings Technology, 2017, 328, 121-133.	2.2	67
108	Corrosion resistance of a superhydrophobic surface on micro-arc oxidation coated Mg-Li-Ca alloy. Journal of Alloys and Compounds, 2017, 728, 815-826.	2.8	90

#	Article	IF	CITATIONS
109	In vitro corrosion of Mgâ \in "Ca alloy â \in " The influence of glucose content. Frontiers of Materials Science, 2017, 11, 284-295.	1.1	33
110	Effect of the second phases on corrosion behavior of the Mg-Al-Zn alloys. Journal of Alloys and Compounds, 2017, 695, 2330-2338.	2.8	145
111	Degradation mechanism of micro-arc oxidation coatings on biodegradable Mg-Ca alloys: The influence of porosity. Journal of Alloys and Compounds, 2017, 695, 2464-2476.	2.8	158
112	In Vitro Degradation of Pure Magnesium―The Effects of Glucose and/or Amino Acid. Materials, 2017, 10, 725.	1.3	43
113	Corrosion Resistance of the Superhydrophobic Mg(OH)2/Mg-Al Layered Double Hydroxide Coatings on Magnesium Alloys. Metals, 2016, 6, 85.	1.0	71
114	Corrosion resistance of layer-by-layer assembled polyvinylpyrrolidone/polyacrylic acid and amorphous silica films on AZ31 magnesium alloys. RSC Advances, 2016, 6, 63107-63116.	1.7	56
115	Hydrothermal synthesis and photoelectrochemical performance enhancement of TiO 2 /graphene composite in photo-generated cathodic protection. Applied Surface Science, 2016, 382, 128-134.	3.1	69
116	In vitro corrosion and antibacterial performance of polysiloxane and poly(acrylic acid)/gentamicin sulfate composite coatings on AZ31 alloy. Surface and Coatings Technology, 2016, 291, 7-14.	2.2	38
117	In Vitro Corrosion and Cytocompatibility of a Microarc Oxidation Coating and Poly(<scp> < scp> actic acid) Composite Coating on Mg–1Li–1Ca Alloy for Orthopedic Implants. ACS Applied Materials & Date: Applied Materials & D</scp>	4.0	256
118	In vitro Degradation of Pure Mg for Esophageal Stent in Artificial Saliva. Journal of Materials Science and Technology, 2016, 32, 437-444.	5.6	48
119	Blood compatibility of zinc–calcium phosphate conversion coating on Mg–1.33Li–0.6Ca alloy. Frontiers of Materials Science, 2016, 10, 281-289.	1.1	27
120	Corrosion resistance of biodegradable polymeric layer-by-layer coatings on magnesium alloy AZ31. Frontiers of Materials Science, 2016, 10, 134-146.	1.1	27
121	<i>In vitro</i> corrosion of pure magnesium and AZ91 alloyâ€"the influence of thin electrolyte layer thickness. International Journal of Energy Production and Management, 2016, 3, 49-56.	1.9	10
122	Corrosion resistance of cerium-doped zinc calcium phosphate chemical conversion coatings on AZ31 magnesium alloy. Transactions of Nonferrous Metals Society of China, 2016, 26, 472-483.	1.7	81
123	Corrosion of in-situ grown MgAl-LDH coating on aluminum alloy. Transactions of Nonferrous Metals Society of China, 2015, 25, 3498-3504.	1.7	59
124	In vitro corrosion and antibacterial properties of layer-by-layer assembled GS/PSS coating on AZ31 magnesium alloys. Transactions of Nonferrous Metals Society of China, 2015, 25, 4028-4039.	1.7	24
125	Corrosion Resistance of Superhydrophobic Mg–Al Layered Double Hydroxide Coatings on Aluminum Alloys. Acta Metallurgica Sinica (English Letters), 2015, 28, 1373-1381.	1.5	70
126	Corrosion resistance of in-situ Mg–Al hydrotalcite conversion film on AZ31 magnesium alloy by one-step formation. Transactions of Nonferrous Metals Society of China, 2015, 25, 1917-1925.	1.7	70

#	Article	IF	Citations
127	Corrosion Resistance of Silane-Modified Hydroxide Zinc Carbonate Film on AZ31 Magnesium Alloy. Acta Metallurgica Sinica (English Letters), 2015, 28, 373-380.	1.5	29
128	In vitro corrosion of as-extruded Mg–Ca alloys—The influence of Ca concentration. Corrosion Science, 2015, 96, 23-31.	3.0	147
129	Mechanical and corrosion properties of Al/Ti film on magnesium alloy AZ31B. Frontiers of Materials Science, 2015, 9, 66-76.	1.1	17
130	Corrosion resistance of Zn–Al layered double hydroxide/poly(lactic acid) composite coating on magnesium alloy AZ31. Frontiers of Materials Science, 2015, 9, 355-365.	1.1	85
131	In vitro degradation of pure Mg in response to glucose. Scientific Reports, 2015, 5, 13026.	1.6	99
132	Fabrication of the Superhydrophobic Surface on Magnesium Alloy and Its Corrosion Resistance. Journal of Materials Science and Technology, 2015, 31, 1139-1143.	5.6	90
133	In vitro corrosion of Mg-6Zn-1Mn-4Sn-1.5Nd/0.5Y alloys. Frontiers of Materials Science, 2014, 8, 230-243.	1.1	15
134	In vitro corrosion of Mg–1.21Li–1.12Ca–1Y alloy. Progress in Natural Science: Materials International, 2014, 24, 492-499.	1.8	41
135	Cr ₂ O ₃ Nanoparticles Modified TiO ₂ Nanotubes for Enhancing Visible Photoelectrochemical Performance. Journal of Nanoscience and Nanotechnology, 2014, 14, 7022-7026.	0.9	5
136	Microstructural evolution and delayed hydride cracking of FSW-AZ31 magnesium alloy during SSRT. Transactions of Nonferrous Metals Society of China, 2014, 24, 3060-3069.	1.7	21
137	Corrosion of magnesium alloy AZ31: The influence of bicarbonate, sulphate, hydrogen phosphate and dihydrogen phosphate ions in saline solution. Corrosion Science, 2014, 86, 171-182.	3.0	126
138	Soluble polyaniline nanofibers prepared via surfactant-free emulsion polymerization. Synthetic Metals, 2014, 198, 293-299.	2.1	20
139	Corrosion resistance of Mg–Al-LDH coating on magnesium alloy AZ31. Surface and Coatings Technology, 2014, 258, 1152-1158.	2.2	188
140	In vitro degradation of MAO/PLA coating on Mg-1.21Li-1.12Ca-1.0Y alloy. Frontiers of Materials Science, 2014, 8, 343-353.	1.1	53
141	Corrosion resistance of calcium-modified zinc phosphate conversion coatings on magnesium–aluminium alloys. Corrosion Science, 2014, 88, 452-459.	3.0	121
142	Corrosion of molybdate intercalated hydrotalcite coating on AZ31 Mg alloy. Journal of Materials Chemistry A, 2014, 2, 13049-13057.	5.2	184
143	Corrosion and characterisation of dual phase Mg–Li–Ca alloy in Hank's solution: The influence of microstructural features. Corrosion Science, 2014, 79, 69-82.	3.0	289
144	Preface for the special issue on light metals as biomaterials. Frontiers of Materials Science, 2014, 8, 199-199.	1.1	3

#	Article	IF	CITATIONS
145	Influence of solution temperature on corrosion resistance of Zn-Ca phosphate conversion coating on biomedical Mg-Li-Ca alloys. Transactions of Nonferrous Metals Society of China, 2013, 23, 3293-3299.	1.7	60
146	Self-assembled silane film and silver nanoparticles coating on magnesium alloys for corrosion resistance and antibacterial applications. Acta Metallurgica Sinica (English Letters), 2013, 26, 681-686.	1.5	31
147	A critical discussion on influence of loading frequency on fatigue crack propagation behavior for extruded Mg–Al–Zn alloys. International Journal of Fatigue, 2012, 36, 40-46.	2.8	26
148	Corrosion of an extruded magnesium alloy ZK60 componentâ€"The role of microstructural features. Journal of Alloys and Compounds, 2011, 509, 4462-4469.	2.8	111
149	Characterization of calcium-modified zinc phosphate conversion coatings and their influences on corrosion resistance of AZ31 alloy. Surface and Coatings Technology, 2011, 205, 3347-3355.	2.2	152
150	Characteristics of the functionally graded coating fabricated by plasma transferred arc centrifugal cladding. Surface and Coatings Technology, 2011, 205, 4441-4446.	2.2	19
151	Influence of Silane on Corrosion Performance of Silane-Modified Acrylate Interpenetrating Polymer Network Coating on Magnesium Alloy AZ31. Materials Science Forum, 2011, 686, 186-191.	0.3	0
152	Influence of silane on corrosion resistance of magnesium alloy AZ31 with thermally sprayed aluminum coatings. Rare Metals, 2010, 29, 193-197.	3.6	26
153	Influence of microstructure on tensile properties and fatigue crack growth in extruded magnesium alloy AM60. International Journal of Fatigue, 2010, 32, 411-419.	2.8	52
154	Comparison of calcium phosphate coatings on Mg–Al and Mg–Ca alloys and their corrosion behavior in Hank's solution. Surface and Coatings Technology, 2010, 204, 3636-3640.	2.2	134
155	lgG Antibodies against Deamidated Gliadin Peptides for Diagnosis of Celiac Disease in Patients with IgA Deficiency. Clinical Chemistry, 2010, 56, 464-468.	1.5	84
156	In vitro corrosion degradation behaviour of Mg–Ca alloy in the presence of albumin. Corrosion Science, 2010, 52, 3341-3347.	3.0	154
157	Preparation of calcium phosphate coatings on Mg-1.0Ca alloy. Transactions of Nonferrous Metals Society of China, 2010, 20, s655-s659.	1.7	31
158	Comparison in characterization of composite and sol-gel coating on AZ31 magnesium alloy. Transactions of Nonferrous Metals Society of China, 2010, 20, s665-s669.	1.7	22
159	Influence of pH values on electroless Ni-P-SiC plating on AZ91D magnesium alloy. Transactions of Nonferrous Metals Society of China, 2010, 20, s674-s678.	1.7	29
160	Thermodynamics of Oxidation on Pb-Free Solders at Elevated Temperature. Materials Science Forum, 2009, 610-613, 526-530.	0.3	3
161	Formation Enthalpy, Free-Energy and Activity Coefficients of Sn-Pb Eutectic Solders. Materials Science Forum, 2009, 610-613, 531-536.	0.3	5
162	Corrosion Behavior of Magnesium Alloy AX53 in Simulated Body Fluids. Materials Science Forum, 2009, 610-613, 1174-1178.	0.3	1

#	Article	IF	CITATIONS
163	Fatigue crack propagation behavior of an as-extruded magnesium alloy AZ80. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 509, 1-7.	2.6	38
164	Influence of load frequency and ageing heat treatment on fatigue crack propagation rate of as-extruded AZ61 alloy. International Journal of Fatigue, 2009, 31, 463-467.	2.8	39
165	Corrosion of friction stir welded magnesium alloy AM50. Corrosion Science, 2009, 51, 1738-1746.	3.0	83
166	Progress and Challenge for Magnesium Alloys as Biomaterials. Advanced Engineering Materials, 2008, 10, B3.	1.6	564
167	Microstructure evolution and tensile properties of friction-stir-welded AM50 magnesium alloy. Transactions of Nonferrous Metals Society of China, 2008, 18, s76-s80.	1.7	29
168	Characterization and wear resistance of macro-arc oxidation coating on magnesium alloy AZ91 in simulated body fluids. Transactions of Nonferrous Metals Society of China, 2008, 18, s361-s364.	1.7	37
169	Effects of Post Heat Treatment on the Interfacial Characteristics of Aluminum Coated AZ91D Magnesium Alloy. Materials Science Forum, 2007, 546-549, 529-532.	0.3	19
170	Effect of Temperature and Relative Humidity on Fatigue Crack Propagation Behavior of AZ61 Magnesium Alloy. Materials Science Forum, 2007, 546-549, 409-412.	0.3	17
171	A study on the SCC susceptibility of friction stir welded AZ31 Mg sheet. Materials Science & Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 460-461, 243-250.	2.6	79
172	Review of studies on corrosion of magnesium alloys. Transactions of Nonferrous Metals Society of China, 2006, 16, s763-s771.	1.7	363
173	A Comparative Study on the Fretting Wear Resistant Properties of AZ91D and AM60B Magnesium Alloys. Materials Science Forum, 2005, 488-489, 745-748.	0.3	2
174	Fatigue and Corrosion Fatigue of Magnesium Alloys. Materials Science Forum, 2005, 488-489, 721-724.	0.3	14
175	Corrosion Behavior of TiO ₂ Coating on Magnesium Alloy AM60 in Hank's Solution. Key Engineering Materials, 0, 373-374, 609-612.	0.4	12
176	Structure and Infrared Radiation Properties of Metal Oxides-Doped Cordierites Using Graded Sintering Synthesis. Advanced Materials Research, 0, 311-313, 140-144.	0.3	0
177	Corrosion Types of Magnesium Alloys. , 0, , .		19