
Farzad Khodabakhshi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5239830/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Friction stir welding/processing of metals and alloys: A comprehensive review on microstructural evolution. Progress in Materials Science, 2021, 117, 100752.	16.0	436
2	Potentials and strategies of solid-state additive friction-stir manufacturing technology: A critical review. Journal of Manufacturing Processes, 2018, 36, 77-92.	2.8	142
3	Fabrication of a new Al-Mg/graphene nanocomposite by multi-pass friction-stir processing: Dispersion, microstructure, stability, and strengthening. Materials Characterization, 2017, 132, 92-107.	1.9	119
4	Hardnessâ~'strength relationships in fine and ultra-fine grained metals processed through constrained groove pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 636, 331-339.	2.6	117
5	Constrained groove pressing of low carbon steel: Nano-structure and mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 4043-4049.	2.6	109
6	Effects of graphene nano-platelets (GNPs) on the microstructural characteristics and textural development of an Al-Mg alloy during friction-stir processing. Surface and Coatings Technology, 2018, 335, 288-305.	2.2	106
7	The effect of constrained groove pressing on grain size, dislocation density and electrical resistivity of low carbon steel. Materials & Design, 2011, 32, 3280-3286.	5.1	96
8	Microstructure-property characterization of a friction-stir welded joint between AA5059 aluminum alloy and high density polyethylene. Materials Characterization, 2014, 98, 73-82.	1.9	90
9	Simulation and experimental study of underwater dissimilar friction-stir welding between aluminium and steel. Journal of Materials Research and Technology, 2020, 9, 3767-3781.	2.6	90
10	Cryogenic friction-stir processing of ultrafine-grained Al–Mg–TiO2 nanocomposites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 620, 471-482.	2.6	89
11	Fabrication of a high strength ultra-fine grained Al-Mg-SiC nanocomposite by multi-step friction-stir processing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 698, 313-325.	2.6	86
12	Friction stir welding of a P/M Al–Al2O3 nanocomposite: Microstructure and mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 585, 222-232.	2.6	85
13	Microstructure and texture development during friction stir processing of Al–Mg alloy sheets with TiO2 nanoparticles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 605, 108-118.	2.6	83
14	Intermetallic compounds (IMCs) formation during dissimilar friction-stir welding of AA5005 aluminum alloy to St-52 steel: numerical modeling and experimental study. International Journal of Advanced Manufacturing Technology, 2019, 100, 2401-2422.	1.5	80
15	Friction-stir processing of an AA8026-TiB 2 -Al 2 O 3 hybrid nanocomposite: Microstructural developments and mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 660, 84-96.	2.6	76
16	Friction stir processing of an aluminum-magnesium alloy with pre-placing elemental titanium powder: In-situ formation of an Al3Ti-reinforced nanocomposite and materials characterization. Materials Characterization, 2015, 108, 102-114.	1.9	75
17	Friction-stir lap-joining of aluminium-magnesium/poly-methyl-methacrylate hybrid structures: thermo-mechanical modelling and experimental feasibility study. Science and Technology of Welding and Joining, 2018, 23, 35-49.	1.5	73
18	Reactive friction stir processing of AA 5052–TiO ₂ nanocomposite: process–microstructure–mechanical characteristics. Materials Science and Technology, 2015, 31, 426-435.	0.8	69

#	Article	IF	CITATIONS
19	Underwater submerged dissimilar friction-stir welding of AA5083 aluminum alloy and A441 AISI steel. International Journal of Advanced Manufacturing Technology, 2019, 102, 4383-4395.	1.5	67
20	A review on metallurgical aspects of laser additive manufacturing (LAM): Stainless steels, nickel superalloys, and titanium alloys. Journal of Materials Research and Technology, 2022, 16, 1029-1068.	2.6	67
21	Effects of stored strain energy on restoration mechanisms and texture components in an aluminum–magnesium alloy prepared by friction stir processing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 642, 204-214.	2.6	66
22	Microstructure, strain-rate sensitivity, work hardening, and fracture behavior of laser additive manufactured austenitic and martensitic stainless steel structures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 756, 545-561.	2.6	65
23	Effects of processing parameters on the characteristics of dissimilar friction-stir-welded joints between AA5058 aluminum alloy and PMMA polymer. Welding in the World, Le Soudage Dans Le Monde, 2018, 62, 117-130.	1.3	64
24	Bonding mechanism and interface characterisation during dissimilar friction stir welding of an aluminium/polymer bi-material joint. Science and Technology of Welding and Joining, 2017, 22, 182-190.	1.5	63
25	Similar and dissimilar friction-stir welding of an PM aluminum-matrix hybrid nanocomposite and commercial pure aluminum: Microstructure and mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 666, 225-237.	2.6	62
26	The role of microstructural features on the electrical resistivity and mechanical properties of powder metallurgy Al-SiC-Al 2 O 3 nanocomposites. Materials and Design, 2017, 130, 26-36.	3.3	61
27	Surface modifications of an aluminum-magnesium alloy through reactive stir friction processing with titanium oxide nanoparticles for enhanced sliding wear resistance. Surface and Coatings Technology, 2017, 309, 114-123.	2.2	59
28	Dissimilar metals deposition by directed energy based on powder-fed laser additive manufacturing. Journal of Manufacturing Processes, 2019, 43, 83-97.	2.8	58
29	Friction-stir processing of a cold sprayed AA7075 coating layer on the AZ31B substrate: Structural homogeneity, microstructures and hardness. Surface and Coatings Technology, 2017, 331, 116-128.	2.2	57
30	Effects of nanometric inclusions on the microstructural characteristics and strengthening of a friction-stir processed aluminum–magnesium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 642, 215-229.	2.6	52
31	Reactive friction-stir processing of an Al-Mg alloy with introducing multi-walled carbon nano-tubes (MW-CNTs): Microstructural characteristics and mechanical properties. Materials Characterization, 2017, 131, 359-373.	1.9	52
32	Dissimilar laser welding of an AA6022-AZ31 lap-joint by using Ni-interlayer: Novel beam-wobbling technique, processing parameters, and metallurgical characterization. Optics and Laser Technology, 2019, 112, 349-362.	2.2	52
33	Production and characterization of an advanced AA6061-Graphene-TiB2 hybrid surface nanocomposite by multi-pass friction stir processing. Surface and Coatings Technology, 2019, 377, 124914.	2.2	51
34	The annealing phenomena and thermal stability of severely deformed steel sheet. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 5212-5218.	2.6	50
35	Evaluation of a polymer-steel laminated sheet composite structure produced by friction stir additive manufacturing (FSAM) technology. Polymer Testing, 2020, 90, 106690.	2.3	50
36	Hot deformation behavior of an aluminum-matrix hybrid nanocomposite fabricated by friction stir processing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 626, 458-466.	2.6	48

#	Article	IF	CITATIONS
37	Microstructural characteristics and mechanical properties of the dissimilar friction-stir butt welds between an Al–Mg alloy and A316L stainless steel. International Journal of Advanced Manufacturing Technology, 2017, 90, 2785-2801.	1.5	47
38	Interfacial bonding mechanisms between aluminum and titanium during cold gas spraying followed by friction-stir modification. Applied Surface Science, 2018, 462, 739-752.	3.1	46
39	Effect of beam wobbling on laser welding of aluminum and magnesium alloy with nickel interlayer. Journal of Manufacturing Processes, 2019, 37, 212-219.	2.8	46
40	Strain Rate Sensitivity, Work Hardening, and Fracture Behavior of an Al-Mg TiO2 Nanocomposite Prepared by Friction Stir Processing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 4073-4088.	1.1	45
41	Fatigue fracture of friction-stir processed Al–Al3Ti–MgO hybrid nanocomposites. International Journal of Fatigue, 2016, 87, 266-278.	2.8	45
42	Lead free Sn-Ag-Cu solders reinforced by Ni-coated graphene nanosheets prepared by mechanical alloying: Microstructural evolution and mechanical durability. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 702, 371-385.	2.6	43
43	Effects of post-annealing on the microstructure and mechanical properties of friction stir processed Al–Mg–TiO2 nanocomposites. Materials & Design, 2014, 63, 30-41.	5.1	42
44	Effect of alumina nanoparticles on the microstructure and mechanical durability of meltspun lead-free solders based on tin alloys. Journal of Alloys and Compounds, 2016, 688, 143-155.	2.8	42
45	Application of CGP-cross route process for microstructure refinement and mechanical properties improvement in steel sheets. Journal of Manufacturing Processes, 2013, 15, 533-541.	2.8	39
46	Influence of hard inclusions on microstructural characteristics and textural components during dissimilar friction-stir welding of an PM Al–Al ₂ O ₃ –SiC hybrid nanocomposite with AA1050 alloy. Science and Technology of Welding and Joining, 2017, 22, 412-427.	1.5	38
47	Spark plasma sintering of a multilayer thermal barrier coating on Inconel 738 superalloy: Microstructural development and hot corrosion behavior. Ceramics International, 2016, 42, 2770-2779.	2.3	37
48	Development of fed friction-stir (FFS) process for dissimilar nanocomposite welding between AA2024 aluminum alloy and polycarbonate (PC). Journal of Manufacturing Processes, 2020, 54, 262-273.	2.8	35
49	A novel fed friction-stir (FFS) technology for nanocomposite joining. Science and Technology of Welding and Joining, 2020, 25, 89-100.	1.5	34
50	Closed-loop control of microstructure and mechanical properties in additive manufacturing by directed energy deposition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 803, 140483.	2.6	34
51	Effects of laser additive manufacturing on microstructure and crystallographic texture of austenitic and martensitic stainless steels. Additive Manufacturing, 2020, 31, 100915.	1.7	33
52	Friction-forging tubular additive manufacturing (FFTAM): A new route of solid-state layer-upon-layer metal deposition. Journal of Materials Research and Technology, 2020, 9, 15273-15285.	2.6	33
53	On the correlation between indentation hardness and tensile strength in friction stir processed materials. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 789, 139682.	2.6	33
54	Monte Carlo simulation of grain refinement during friction stir processing. Journal of Materials Science, 2020, 55, 13438-13456.	1.7	31

#	Article	IF	CITATIONS
55	Metallurgical characteristics and failure mode transition for dissimilar resistance spot welds between ultra-fine grained and coarse-grained low carbon steel sheets. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 637, 12-22.	2.6	30
56	Nanoindentation creep properties of lead-free nanocomposite solders reinforced by modified carbon nanotubes. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 797, 140203.	2.6	30
57	Mechanical properties and microstructure of resistance spot welded severely deformed low carbon steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 529, 237-245.	2.6	29
58	Fabrication of a nanostructured high strength steel tube by friction-forging tubular additive manufacturing (FFTAM) technology. Journal of Manufacturing Processes, 2020, 58, 724-735.	2.8	29
59	Resistance spot welding of ultra-fine grained steel sheets produced by constrained groove pressing: Optimization and characterization. Materials Characterization, 2012, 69, 71-83.	1.9	28
60	Accumulative fold-forging (AFF) as a novel severe plastic deformation process to fabricate a high strength ultra-fine grained layered aluminum alloy structure. Materials Characterization, 2018, 136, 229-239.	1.9	27
61	Solid-state joining of powder metallurgy Al-Al2O3 nanocomposites via friction-stir welding: Effects of powder particle size on the weldability, microstructure, and mechanical property. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 754, 190-204.	2.6	27
62	Microstructure–mechanical property relationship in an Al–Mg alloy processed by constrained groove pressing-cross route. Materials Science and Technology, 2018, 34, 1003-1017.	0.8	26
63	Surface Modification of a Cold Gas Dynamic Spray-Deposited Titanium Coating on Aluminum Alloy by using Friction-Stir Processing. Journal of Thermal Spray Technology, 2019, 28, 1185-1198.	1.6	26
64	3D finite element analysis and experimental validation of constrained groove pressing–cross route as an SPD process for sheet form metals. International Journal of Advanced Manufacturing Technology, 2014, 73, 1291-1305.	1.5	25
65	Dynamic restoration and crystallographic texture of a friction-stir processed Al–Mg–SiC surface nanocomposite. Materials Science and Technology, 2018, 34, 1773-1791.	0.8	24
66	Dynamic strain aging behavior of an ultra-fine grained Al-Mg alloy (AA5052) processed via classical constrained groove pressing. Journal of Materials Research and Technology, 2019, 8, 630-643.	2.6	24
67	Effects of friction stir processing on the microstructure, mechanical and corrosion behaviors of an aluminum-magnesium alloy. Surface and Coatings Technology, 2021, 405, 126647.	2.2	24
68	Differential scanning calorimetry study of constrained groove pressed low carbon steel: Recovery, recrystallisation and ferrite to austenite phase transformation. Materials Science and Technology, 2014, 30, 765-773.	0.8	23
69	Dissimilar friction-stir welding of aluminum and polymer: a review. International Journal of Advanced Manufacturing Technology, 2019, 104, 333-358.	1.5	23
70	Fabrication and characterization of a high strength ultra-fine grained metal-matrix AA8006-B4C layered nanocomposite by a novel accumulative fold-forging (AFF) process. Materials and Design, 2018, 157, 211-226.	3.3	22
71	Influence of CNTs decomposition during reactive frictionâ€stir processing of an Al–Mg alloy on the correlation between microstructural characteristics and microtextural components. Journal of Microscopy, 2018, 271, 188-206.	0.8	22
72	Tailoring the residual stress during two-step cold gas spraying and friction-stir surface integration of titanium coating. Surface and Coatings Technology, 2019, 380, 125008.	2.2	20

#	Article	IF	CITATIONS
73	Influence of graphene content and nickel decoration on the microstructural and mechanical characteristics of the Cu/Sn–Ag–Cu/Cu soldered joint. Journal of Materials Research and Technology, 2020, 9, 8953-8970.	2.6	20
74	Nano-indentation behavior of layered ultra-fine grained AA8006 aluminum alloy and AA8006-B4C nanostructured nanocomposite produced by accumulative fold forging process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 744, 120-136.	2.6	19
75	Mechanical properties of HA@Ag/PLA nanocomposite structures prepared by extrusion-based additive manufacturing. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 118, 104455.	1.5	19
76	Microstructural evolution and mechanical properties of a friction-stir processed Ti-hydroxyapatite (HA) nanocomposite. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 88, 127-139.	1.5	18
77	Finite element modeling and experimental validation of CGP classical and new cross routes for severe plastic deformation of an Al-Mg alloy. Journal of Manufacturing Processes, 2019, 37, 348-361.	2.8	18
78	On the Failure Behavior of Highly Cold Worked Low Carbon Steel Resistance Spot Welds. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 1376-1389.	1.1	17
79	Dissimilar friction-stir lap-welding of aluminum-magnesium (AA5052) and aluminum-copper (AA2024) alloys: microstructural evolution and mechanical properties. International Journal of Advanced Manufacturing Technology, 2018, 94, 3713-3730.	1.5	17
80	On the stability, microstructure, and mechanical property of powder metallurgy Al–SiC nanocomposites during similar and dissimilar laser welding. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 759, 688-702.	2.6	16
81	An investigation into failure analysis of interfering part of a steam turbine journal bearing. Case Studies in Engineering Failure Analysis, 2014, 2, 61-68.	1.2	13
82	Reactive friction-stir processing of nanocomposites: Effects of thermal history on microstructure–mechanical property relationships. Materials Science and Technology, 2017, 33, 1776-1789.	0.8	13
83	Stability of ultra-fine and nano-grains after severe plastic deformation: a critical review. Journal of Materials Science, 2021, 56, 15513-15537.	1.7	13
84	Hydrogen storage behavior of Mg/Ni layered nanostructured composite materials produced by accumulative fold-forging. International Journal of Hydrogen Energy, 2022, 47, 1048-1062.	3.8	13
85	Effects of SiC nanoparticles on the dissimilar friction stir weldability of low-density polyethylene (LDPE) and AA7075 aluminum alloy. Journal of Materials Research and Technology, 2021, 13, 449-462.	2.6	12
86	Orientation structural mapping and textural characterization of a CP-Ti/HA surface nanocomposite produced by friction-stir processing. Surface and Coatings Technology, 2019, 374, 460-475.	2.2	11
87	Lead-free Sn-based/MW-CNTs nanocomposite soldering: effects of reinforcing content, Ni-coating modification, and isothermal ageing treatment. Journal of Materials Science: Materials in Electronics, 2019, 30, 4737-4752.	1.1	9
88	Characterization of accumulative fold-forged magnesium-nickel multilayered composite structures. Materials Characterization, 2020, 167, 110478.	1.9	8
89	Closed-loop deposition of martensitic stainless steel during laser additive manufacturing to control microstructure and mechanical properties. Optics and Lasers in Engineering, 2021, 145, 106680.	2.0	8
90	Wear Resistance and Tribological Features of Ultra-Fine-Grained Al-Mg Alloys Processed by Constrained Groove Pressing-Cross Route. Journal of Materials Engineering and Performance, 2019, 28, 1235-1252.	1.2	7

#	Article	IF	CITATIONS
91	Influence of autogenous seeding on densification and microstructure in processing of Î ³ -alumina nanopowders. Phase Transitions, 2011, 84, 1-14.	0.6	4
92	Under glass transition temperature diffusion bonding of bulk metallic glass and aluminum. Materials Chemistry and Physics, 2021, 269, 124758.	2.0	4
93	Depth-sensing thermal stability of accumulative fold-forged nanostructured materials. Materials and Design, 2021, 202, 109554.	3.3	3
94	Small-scale plasticity of ultra-fine grained alloy and nanostructured nanocomposite: Ambient and elevated-temperature nanoindentation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 807, 140873.	2.6	2
95	Effect of Post Annealing Treatment on Nano-Structured Low Carbon Steel Sheets Processed by Constrained Groove Pressing. Materials Science Forum, 0, 667-669, 1009-1014.	0.3	1