Anindita Chakraborty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/52398/publications.pdf

Version: 2024-02-01

23 papers 1,040 citations

16 h-index 713466 21 g-index

24 all docs

24 docs citations

times ranked

24

1749 citing authors

#	Article	IF	CITATIONS
1	Lanthanide–organic frameworks for gas storage and as magneto-luminescent materials. Coordination Chemistry Reviews, 2014, 273-274, 139-164.	18.8	242
2	Post-synthetic metalation in an anionic MOF for efficient catalytic activity and removal of heavy metal ions from aqueous solution. Chemical Communications, 2016, 52, 2831-2834.	4.1	128
3	A bimodal anionic MOF: turn-off sensing of Cu ^{II} and specific sensitization of Eu ^{III} . Chemical Communications, 2014, 50, 13567-13570.	4.1	120
4	Bimodal Magneto-Luminescent Dysprosium (Dy ^{III})-Potassium (K ^I)-Oxalate Framework: Magnetic Switchability with High Anisotropic Barrier and Solvent Sensing. Chemistry of Materials, 2013, 25, 1673-1679.	6.7	107
5	Flexible MOF–aminoclay nanocomposites showing tunable stepwise/gated sorption for C ₂ H ₂ , CO ₂ and separation for CO ₂ /N ₂ and CO ₂ /CH ₄ . Journal of Materials Chemistry A, 2017, 5, 8423-8430.	10.3	67
6	MOFâ€"aminoclay composites for superior CO ₂ capture, separation and enhanced catalytic activity in chemical fixation of CO ₂ . Chemical Communications, 2016, 52, 11378-11381.	4.1	62
7	Mg-MOF-74@SBA-15 hybrids: Synthesis, characterization, and adsorption properties. APL Materials, 2014, 2, .	5.1	35
8	Assembly of trinuclear and tetranuclear building units of Cu2+ towards two 1D magnetic systems: synthesis and magneto-structural correlations. Dalton Transactions, 2012, 41, 5879.	3.3	34
9	A Heterometallic (Ni ^{II} –Cu ^{II}) Decanuclear Cluster Containing Two Distorted Cubane-like Pentanuclear Cores: Synthesis, Structure, and Magnetic Properties. Inorganic Chemistry, 2012, 51, 6440-6442.	4.0	32
10	Mono- and di-nuclear nickel(<scp>ii</scp>) complexes derived from NNO donor ligands: syntheses, crystal structures and magnetic studies of dinuclear analogues. RSC Advances, 2016, 6, 36020-36030.	3. 6	28
11	In Situ Growth of Self-Assembled ZIF-8–Aminoclay Nanocomposites with Enhanced Surface Area and CO ₂ Uptake. Inorganic Chemistry, 2017, 56, 9426-9435.	4.0	26
12	Discrete dinuclear complex to extended 2D compound in a Cu–azido system by controlling coligand stoichiometry: synthesis and magneto-structural correlations. Dalton Transactions, 2013, 42, 10707.	3.3	25
13	Synergistic Role of Microwave and Perturbation toward Synthesis of Hierarchical Porous MOFs with Tunable Porosity. Inorganic Chemistry, 2020, 59, 3775-3782.	4.0	22
14	Charge-Assisted Self-Assembly of ZIF-8 and Laponite Clay toward a Functional Hydrogel Nanocomposite. Inorganic Chemistry, 2018, 57, 14480-14483.	4.0	19
15	Tetracarboxylate Linker-Based Flexible Cu ^{II} Frameworks: Efficient Separation of CO ₂ from CO ₂ from CO ₂ from Co ₂ H ₂ from CO ₂ H ₄ Mixtures. ACS Omega, 2018, 3, 2018-2026.	3. 5	18
16	Double Ligand Activation in Silyl-Substituted Rare-Earth Cyclobutadienyl Complexes. Organometallics, 2020, 39, 8-12.	2.3	18
17	Structural and Magnetic Diversity Based on Different Imidazolate Linkers in Cu(II)-Azido Coordination Compounds. Inorganic Chemistry, 2014, 53, 11991-12001.	4.0	13
18	Bifunctional Co(II)–Ag(I) and Ni(II)–Ag(I) Frameworks: Modulation of Magnetic Property and CO ₂ Uptake Based on Organic Pillars. Crystal Growth and Design, 2013, 13, 4968-4976.	3.0	12

#	Article	IF	CITATIONS
19	A hexanuclear Cu(<scp>i</scp>) cluster supported by cuprophilic interaction: effects of aromatics on luminescence properties. RSC Advances, 2014, 4, 35167-35170.	3.6	12
20	A discrete Cull6 cluster and a 3D Mn ^{II} â€"Cu ^{II} framework based on assembly of Mn ₂ Cu ₄ clusters: synthesis, structure and magnetic properties. Dalton Transactions, 2016, 45, 15523-15531.	3.3	9
21	Chapter 12. Gated and Stepwise Sorption Processes in Functional Metal-organic Frameworks. Monographs in Supramolecular Chemistry, 0, , 412-453.	0.2	7
22	2D coordination polymer composed of 1D {Nill(\hat{l} ¼-O)(\hat{l} ¼-H2O)Nill} ferromagnetic chains: Modulation of magnetic properties based on dehydration and rehydration. Polyhedron, 2016, 115, 276-281.	2.2	4
23	Interpenetrated Metal–Organic Frameworks with [Ag(CN)2]â^ Bridging Ligand: Synthesis, Structural Characterization and Magnetic Study. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2014, 84, 243-249.	1.2	0