List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5239441/publications.pdf Version: 2024-02-01

<u> Сило-Ілім Сило</u>

#	Article	IF	CITATIONS
1	Reducing Sugar: New Functional Molecules for the Green Synthesis of Graphene Nanosheets. ACS Nano, 2010, 4, 2429-2437.	7.3	1,297
2	Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science, 2016, 354, 1410-1414.	6.0	1,262
3	Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chemical Society Reviews, 2011, 40, 2644.	18.7	1,195
4	Monodisperse Au Nanoparticles for Selective Electrocatalytic Reduction of CO ₂ to CO. Journal of the American Chemical Society, 2013, 135, 16833-16836.	6.6	1,192
5	Three-Dimensional Pt-on-Pd Bimetallic Nanodendrites Supported on Graphene Nanosheet: Facile Synthesis and Used as an Advanced Nanoelectrocatalyst for Methanol Oxidation. ACS Nano, 2010, 4, 547-555.	7.3	1,119
6	PdMo bimetallene for oxygen reduction catalysis. Nature, 2019, 574, 81-85.	13.7	935
7	Earthâ€Abundant Nanomaterials for Oxygen Reduction. Angewandte Chemie - International Edition, 2016, 55, 2650-2676.	7.2	926
8	Tuning Nanoparticle Catalysis for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2013, 52, 8526-8544.	7.2	902
9	Black Phosphorus Nanosheetâ€Based Drug Delivery System for Synergistic Photodynamic/Photothermal/Chemotherapy of Cancer. Advanced Materials, 2017, 29, 1603864.	11.1	793
10	Bamboo-like Carbon Nanotube/Fe ₃ C Nanoparticle Hybrids and Their Highly Efficient Catalysis for Oxygen Reduction. Journal of the American Chemical Society, 2015, 137, 1436-1439.	6.6	786
11	Noble metal nanomaterials: Controllable synthesis and application in fuel cells and analytical sensors. Nano Today, 2011, 6, 240-264.	6.2	743
12	Strain-controlled electrocatalysis on multimetallic nanomaterials. Nature Reviews Materials, 2017, 2,	23.3	727
13	Platinum Nanoparticle Ensemble-on-Graphene Hybrid Nanosheet: One-Pot, Rapid Synthesis, and Used as New Electrode Material for Electrochemical Sensing. ACS Nano, 2010, 4, 3959-3968.	7.3	716
14	Synthesis and electrochemical applications of gold nanoparticles. Analytica Chimica Acta, 2007, 598, 181-192.	2.6	651
15	Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis. Nature Communications, 2017, 8, 14580.	5.8	648
16	FePt Nanoparticles Assembled on Graphene as Enhanced Catalyst for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2012, 134, 2492-2495.	6.6	626
17	Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis. Nature Communications, 2016, 7, 11850.	5.8	607
18	Cyclodextrin Functionalized Graphene Nanosheets with High Supramolecular Recognition Capability: Synthesis and Hostâ ''Guest Inclusion for Enhanced Electrochemical Performance. ACS Nano, 2010, 4, 4001-4010.	7.3	596

#	Article	IF	CITATIONS
19	Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials. Chemical Society Reviews, 2016, 45, 1273-1307.	18.7	589
20	A metal–organic framework route to in situ encapsulation of Co@Co ₃ O ₄ @C core@bishell nanoparticles into a highly ordered porous carbon matrix for oxygen reduction. Energy and Environmental Science, 2015, 8, 568-576.	15.6	571
21	Heminâ^'Graphene Hybrid Nanosheets with Intrinsic Peroxidase-like Activity for Label-free Colorimetric Detection of Single-Nucleotide Polymorphism. ACS Nano, 2011, 5, 1282-1290.	7.3	564
22	Recent Advances on Waterâ€Splitting Electrocatalysis Mediated by Nobleâ€Metalâ€Based Nanostructured Materials. Advanced Energy Materials, 2020, 10, 1903120.	10.2	560
23	Metalâ€Free Carbon Materials for CO ₂ Electrochemical Reduction. Advanced Materials, 2017, 29, 1701784.	11.1	558
24	Spectral and Dynamical Properties of Single Excitons, Biexcitons, and Trions in Cesium–Lead-Halide Perovskite Quantum Dots. Nano Letters, 2016, 16, 2349-2362.	4.5	533
25	Oxygen Vacancies Dominated NiS ₂ /CoS ₂ Interface Porous Nanowires for Portable Zn–Air Batteries Driven Water Splitting Devices. Advanced Materials, 2017, 29, 1704681.	11.1	533
26	2D Monolayer MoS ₂ –Carbon Interoverlapped Superstructure: Engineering Ideal Atomic Interface for Lithium Ion Storage. Advanced Materials, 2015, 27, 3687-3695.	11.1	504
27	Easy Synthesis and Imaging Applications of Cross-Linked Green Fluorescent Hollow Carbon Nanoparticles. ACS Nano, 2012, 6, 400-409.	7.3	467
28	Iridiumâ€Based Multimetallic Porous Hollow Nanocrystals for Efficient Overallâ€Waterâ€Splitting Catalysis. Advanced Materials, 2017, 29, 1703798.	11.1	460
29	Room Temperature Single-Photon Emission from Individual Perovskite Quantum Dots. ACS Nano, 2015, 9, 10386-10393.	7.3	459
30	NiO/CoN Porous Nanowires as Efficient Bifunctional Catalysts for Zn–Air Batteries. ACS Nano, 2017, 11, 2275-2283.	7.3	456
31	Shortâ€Range Order in Mesoporous Carbon Boosts Potassiumâ€lon Battery Performance. Advanced Energy Materials, 2018, 8, 1701648.	10.2	451
32	Chemically doped fluorescent carbon and graphene quantum dots for bioimaging, sensor, catalytic and photoelectronic applications. Nanoscale, 2016, 8, 2532-2543.	2.8	443
33	High-sensitivity determination of lead and cadmium based on the Nafion-graphene composite film. Analytica Chimica Acta, 2009, 649, 196-201.	2.6	430
34	Rational Design of MnO/Carbon Nanopeapods with Internal Void Space for High-Rate and Long-Life Li-Ion Batteries. ACS Nano, 2014, 8, 6038-6046.	7.3	420
35	PdM (M = Pt, Au) Bimetallic Alloy Nanowires with Enhanced Electrocatalytic Activity for Electroâ€oxidation of Small Molecules. Advanced Materials, 2012, 24, 2326-2331.	11.1	413
36	Bismuth oxyhalide layered materials for energy and environmental applications. Nano Energy, 2017, 41, 172-192.	8.2	413

#	Article	IF	CITATIONS
37	Synergistic Effects between Atomically Dispersed Feâ^'Nâ^'C and Câ^'Sâ^'C for the Oxygen Reduction Reaction in Acidic Media. Angewandte Chemie - International Edition, 2017, 56, 13800-13804.	7.2	409
38	Strain engineering of metal-based nanomaterials for energy electrocatalysis. Chemical Society Reviews, 2019, 48, 3265-3278.	18.7	401
39	Co/CoO Nanoparticles Assembled on Graphene for Electrochemical Reduction of Oxygen. Angewandte Chemie - International Edition, 2012, 51, 11770-11773.	7.2	391
40	FePt and CoPt Nanowires as Efficient Catalysts for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2013, 52, 3465-3468.	7.2	389
41	The Kirkendall Effect for Engineering Oxygen Vacancy of Hollow Co ₃ O ₄ Nanoparticles toward Highâ€Performance Portable Zinc–Air Batteries. Angewandte Chemie - International Edition, 2019, 58, 13840-13844.	7.2	385
42	lonic liquid-induced strategy for carbon quantum dots/BiOX (X = Br, Cl) hybrid nanosheets with superior visible light-driven photocatalysis. Applied Catalysis B: Environmental, 2016, 181, 260-269.	10.8	380
43	Atomically Transition Metals on Selfâ€Supported Porous Carbon Flake Arrays as Binderâ€Free Air Cathode for Wearable Zincâ^'Air Batteries. Advanced Materials, 2019, 31, e1808267.	11.1	380
44	Monodisperse mesoporous superparamagnetic single-crystal magnetite nanoparticles for drug delivery. Biomaterials, 2009, 30, 1881-1889.	5.7	372
45	Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis. Nature Communications, 2019, 10, 5231.	5.8	371
46	Sulfur/Oxygen Codoped Porous Hard Carbon Microspheres for Highâ€Performance Potassiumâ€ion Batteries. Advanced Energy Materials, 2018, 8, 1800171.	10.2	363
47	Tuning Nanoparticle Structure and Surface Strain for Catalysis Optimization. Journal of the American Chemical Society, 2014, 136, 7734-7739.	6.6	349
48	Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage. Energy and Environmental Science, 2019, 12, 1605-1612.	15.6	349
49	A Universal Strategy for Hollow Metal Oxide Nanoparticles Encapsulated into B/N Coâ€Doped Graphitic Nanotubes as Highâ€Performance Lithiumâ€Ion Battery Anodes. Advanced Materials, 2018, 30, 1705441.	11.1	345
50	Metallic Grapheneâ€Like VSe ₂ Ultrathin Nanosheets: Superior Potassiumâ€Ion Storage and Their Working Mechanism. Advanced Materials, 2018, 30, e1800036.	11.1	341
51	Ultrathin Laminar Ir Superstructure as Highly Efficient Oxygen Evolution Electrocatalyst in Broad pH Range. Nano Letters, 2016, 16, 4424-4430.	4.5	339
52	Efficient oxygen reduction catalysis by subnanometer Pt alloy nanowires. Science Advances, 2017, 3, e1601705.	4.7	330
53	Synthesis of Ultrathin FePtPd Nanowires and Their Use as Catalysts for Methanol Oxidation Reaction. Journal of the American Chemical Society, 2011, 133, 15354-15357.	6.6	309
54	Rational Design of MXene/1Tâ€2H MoS ₂ Nanohybrids for Highâ€Performance Lithium–Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1707578.	7.8	309

#	Article	IF	CITATIONS
55	MoB/g ₃ N ₄ Interface Materials as a Schottky Catalyst to Boost Hydrogen Evolution. Angewandte Chemie - International Edition, 2018, 57, 496-500.	7.2	308
56	Self-Assembly of Cationic Polyelectrolyte-Functionalized Graphene Nanosheets and Gold Nanoparticles: A Two-Dimensional Heterostructure for Hydrogen Peroxide Sensing. Langmuir, 2010, 26, 11277-11282.	1.6	306
57	Stable Highâ€Index Faceted Pt Skin on Zigzagâ€Like PtFe Nanowires Enhances Oxygen Reduction Catalysis. Advanced Materials, 2018, 30, 1705515.	11.1	305
58	Dumbbell-like PtPd–Fe ₃ O ₄ Nanoparticles for Enhanced Electrochemical Detection of H ₂ O ₂ . Nano Letters, 2012, 12, 4859-4863.	4.5	303
59	Pistachioâ€Shuckâ€Like MoSe ₂ /C Core/Shell Nanostructures for Highâ€Performance Potassiumâ€Ion Storage. Advanced Materials, 2018, 30, e1801812.	11.1	297
60	Atomically FeN2 moieties dispersed on mesoporous carbon: A new atomic catalyst for efficient oxygen reduction catalysis. Nano Energy, 2017, 35, 9-16.	8.2	289
61	The Marriage of the FeN ₄ Moiety and MXene Boosts Oxygen Reduction Catalysis: Fe 3d Electron Delocalization Matters. Advanced Materials, 2018, 30, e1803220.	11.1	289
62	The Kirkendall Effect for Engineering Oxygen Vacancy of Hollow Co ₃ O ₄ Nanoparticles toward Highâ€Performance Portable Zinc–Air Batteries. Angewandte Chemie, 2019, 131, 13978-13982.	1.6	284
63	A General Method for Multimetallic Platinum Alloy Nanowires as Highly Active and Stable Oxygen Reduction Catalysts. Advanced Materials, 2015, 27, 7204-7212.	11.1	280
64	Ordered PdCuâ€Based Nanoparticles as Bifunctional Oxygenâ€Reduction and Ethanolâ€Oxidation Electrocatalysts. Angewandte Chemie - International Edition, 2016, 55, 9030-9035.	7.2	278
65	Strongly Coupled Nickel–Cobalt Nitrides/Carbon Hybrid Nanocages with Pt‣ike Activity for Hydrogen Evolution Catalysis. Advanced Materials, 2019, 31, e1805541.	11.1	276
66	Rational Design of Si/SiO ₂ @Hierarchical Porous Carbon Spheres as Efficient Polysulfide Reservoirs for Highâ€Performance Li–S Battery. Advanced Materials, 2016, 28, 3167-3172.	11.1	275
67	A New Core/Shell NiAu/Au Nanoparticle Catalyst with Pt-like Activity for Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2015, 137, 5859-5862.	6.6	274
68	Seed-Mediated Synthesis of Core/Shell FePtM/FePt (M = Pd, Au) Nanowires and Their Electrocatalysis for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2013, 135, 13879-13884.	6.6	269
69	Black Phosphorus Nanosheets as a Neuroprotective Nanomedicine for Neurodegenerative Disorder Therapy. Advanced Materials, 2018, 30, 1703458.	11.1	266
70	Photoinduced Electron Transfer of DNA/Ag Nanoclusters Modulated by G-Quadruplex/Hemin Complex for the Construction of Versatile Biosensors. Journal of the American Chemical Society, 2013, 135, 2403-2406.	6.6	258
71	Core/Shell Au/CuPt Nanoparticles and Their Dual Electrocatalysis for Both Reduction and Oxidation Reactions. Journal of the American Chemical Society, 2014, 136, 5745-5749.	6.6	255
72	Biomolecule-nanoparticle hybrids for electrochemical biosensors. TrAC - Trends in Analytical Chemistry, 2009, 28, 96-109.	5.8	250

#	Article	IF	CITATIONS
73	Constructing Carbon Nanotube/Pt Nanoparticle Hybrids Using an Imidazoliumâ€5altâ€Based Ionic Liquid as a Linker. Advanced Materials, 2010, 22, 1269-1272.	11.1	250
74	Biomolecule-stabilized Au nanoclusters as a fluorescence probe for sensitive detection of glucose. Biosensors and Bioelectronics, 2011, 26, 1965-1969.	5.3	250
75	Synthetic Control of FePtM Nanorods (M = Cu, Ni) To Enhance the Oxygen Reduction Reaction. Journal of the American Chemical Society, 2013, 135, 7130-7133.	6.6	250
76	Strengthening reactive metal-support interaction to stabilize high-density Pt single atoms on electron-deficient g-C3N4 for boosting photocatalytic H2 production. Nano Energy, 2019, 56, 127-137.	8.2	247
77	Recent Progress in the Design of Advanced Cathode Materials and Battery Models for Highâ€Performance Lithiumâ€X (X = O ₂ , S, Se, Te, I ₂ , Br ₂) Batteries. Advanced Materials, 2017, 29, 1606454.	11.1	240
78	Recent progress in two-dimensional inorganic quantum dots. Chemical Society Reviews, 2018, 47, 586-625.	18.7	230
79	Tuning Nanowires and Nanotubes for Efficient Fuelâ€Cell Electrocatalysis. Advanced Materials, 2016, 28, 10117-10141.	11.1	228
80	Emerging Dualâ€Atomicâ€Site Catalysts for Efficient Energy Catalysis. Advanced Materials, 2021, 33, e2102576.	11.1	226
81	Trimetallic Oxyhydroxide Coralloids for Efficient Oxygen Evolution Electrocatalysis. Angewandte Chemie - International Edition, 2017, 56, 4502-4506.	7.2	225
82	Metal Surface and Interface Energy Electrocatalysis: Fundamentals, Performance Engineering, and Opportunities. CheM, 2018, 4, 2054-2083.	5.8	225
83	Nanoscale Engineering of Heterostructured Anode Materials for Boosting Lithiumâ€Ion Storage. Advanced Materials, 2016, 28, 7580-7602.	11.1	224
84	Ultrathin PtNiM (M = Rh, Os, and Ir) Nanowires as Efficient Fuel Oxidation Electrocatalytic Materials. Advanced Materials, 2019, 31, e1805833.	11.1	223
85	Screw Thread-Like Platinum–Copper Nanowires Bounded with High-Index Facets for Efficient Electrocatalysis. Nano Letters, 2016, 16, 5037-5043.	4.5	221
86	A 3D Trilayered CNT/MoSe ₂ /C Heterostructure with an Expanded MoSe ₂ Interlayer Spacing for an Efficient Sodium Storage. Advanced Energy Materials, 2019, 9, 1900567.	10.2	218
87	Atomically Dispersed Feâ€N <i>_x</i> /C Electrocatalyst Boosts Oxygen Catalysis via a New Metalâ€Organic Polymer Supramolecule Strategy. Advanced Energy Materials, 2018, 8, 1801226.	10.2	216
88	Biomimetic ant-nest ionogel electrolyte boosts the performance of dendrite-free lithium batteries. Energy and Environmental Science, 2017, 10, 1660-1667.	15.6	211
89	Beyond Yolk–Shell Nanoparticles: Fe ₃ O ₄ @Fe ₃ C Core@Shell Nanoparticles as Yolks and Carbon Nanospindles as Shells for Efficient Lithium Ion Storage. ACS Nano, 2015, 9, 3369-3376.	7.3	207
90	Single Atom Array Mimic on Ultrathin MOF Nanosheets Boosts the Safety and Life of Lithium–Sulfur Batteries. Advanced Materials, 2020, 32, e1906722.	11.1	205

#	Article	IF	CITATIONS
91	A Three-Dimensional Carbon Framework Constructed by N/S Co-doped Graphene Nanosheets with Expanded Interlayer Spacing Facilitates Potassium Ion Storage. ACS Energy Letters, 2020, 5, 1653-1661.	8.8	202
92	Atomicâ€Level Coupled Interfaces and Lattice Distortion on CuS/NiS ₂ Nanocrystals Boost Oxygen Catalysis for Flexible Znâ€Air Batteries. Advanced Functional Materials, 2017, 27, 1703779.	7.8	200
93	A Sensitive H ₂ O ₂ Assay Based on Dumbbellâ€like PtPdâ€Fe ₃ O ₄ Nanoparticles. Advanced Materials, 2013, 25, 132-136.	11.1	197
94	lridium–Tungsten Alloy Nanodendrites as pH-Universal Water-Splitting Electrocatalysts. ACS Central Science, 2018, 4, 1244-1252.	5.3	196
95	Egg-Box Structure in Cobalt Alginate: A New Approach to Multifunctional Hierarchical Mesoporous N-Doped Carbon Nanofibers for Efficient Catalysis and Energy Storage. ACS Central Science, 2015, 1, 261-269.	5.3	195
96	Pt/Pd bimetallic nanotubes with petal-like surfaces for enhanced catalytic activity and stability towards ethanol electrooxidation. Energy and Environmental Science, 2010, 3, 1307.	15.6	191
97	Fluorination-enabled Reconstruction of NiFe Electrocatalysts for Efficient Water Oxidation. Nano Letters, 2021, 21, 492-499.	4.5	190
98	Graphene/Intermetallic PtPb Nanoplates Composites for Boosting Electrochemical Detection of H ₂ O ₂ Released from Cells. Analytical Chemistry, 2017, 89, 3761-3767.	3.2	186
99	Structure-Induced Enhancement in Electrooxidation of Trimetallic FePtAu Nanoparticles. Journal of the American Chemical Society, 2012, 134, 5060-5063.	6.6	185
100	One-pot, water-phase approach to high-quality graphene/TiO2 composite nanosheets. Chemical Communications, 2010, 46, 7148.	2.2	183
101	Ionogel Electrolytes for Highâ€Performance Lithium Batteries: A Review. Advanced Energy Materials, 2018, 8, 1702675.	10.2	182
102	Seaweed-Derived Route to Fe ₂ O ₃ Hollow Nanoparticles/N-Doped Graphene Aerogels with High Lithium Ion Storage Performance. ACS Applied Materials & Interfaces, 2016, 8, 7047-7053.	4.0	179
103	Crystalline Control of {111} Bounded Pt ₃ Cu Nanocrystals: Multiply-Twinned Pt ₃ Cu Icosahedra with Enhanced Electrocatalytic Properties. ACS Nano, 2015, 9, 7634-7640.	7.3	178
104	Morphology and Phase Controlled Construction of Pt–Ni Nanostructures for Efficient Electrocatalysis. Nano Letters, 2016, 16, 2762-2767.	4.5	176
105	Recent advances in confining metal-based nanoparticles into carbon nanotubes for electrochemical energy conversion and storage devices. Energy and Environmental Science, 2019, 12, 2924-2956.	15.6	176
106	Nanocatalyst Superior to Pt for Oxygen Reduction Reactions: The Case of Core/Shell Ag(Au)/CuPd Nanoparticles. Journal of the American Chemical Society, 2014, 136, 15026-15033.	6.6	172
107	Recent Advances on Black Phosphorus for Biomedicine and Biosensing. Advanced Functional Materials, 2019, 29, 1900318.	7.8	171
108	Proliferaâ€Greenâ€Tide as Sustainable Source for Carbonaceous Aerogels with Hierarchical Pore to Achieve Multiple Energy Storage. Advanced Functional Materials, 2016, 26, 8487-8495.	7.8	169

#	Article	IF	CITATIONS
109	Ultrathin Visibleâ€Lightâ€Driven Mo Incorporating In ₂ O ₃ –ZnIn ₂ Se ₄ Z‣cheme Nanosheet Photocatalysts. Advanced Materials, 2019, 31, e1807226.	11.1	165
110	A General Method for Transition Metal Single Atoms Anchored on Honeycomb‣ike Nitrogenâ€Đoped Carbon Nanosheets. Advanced Materials, 2020, 32, e1906905.	11.1	163
111	Exclusive Strain Effect Boosts Overall Water Splitting in PdCu/Ir Core/Shell Nanocrystals. Angewandte Chemie - International Edition, 2021, 60, 8243-8250.	7.2	163
112	Polyaniline/Pt Hybrid Nanofibers: Highâ€Efficiency Nanoelectrocatalysts for Electrochemical Devices. Small, 2009, 5, 1869-1876.	5.2	161
113	Layer-by-Layer Self-Assembly for Constructing a Graphene/Platinum Nanoparticle Three-Dimensional Hybrid Nanostructure Using Ionic Liquid as a Linker. Langmuir, 2010, 26, 7614-7618.	1.6	159
114	A catalyst-free synthesis of B, N co-doped graphene nanostructures with tunable dimensions as highly efficient metal free dual electrocatalysts. Journal of Materials Chemistry A, 2016, 4, 16469-16475.	5.2	158
115	A Solid‣tate Fibriform Supercapacitor Boosted by Host–Guest Hybridization between the Carbon Nanotube Scaffold and MXene Nanosheets. Small, 2018, 14, e1801203.	5.2	158
116	Doubleâ€Helix Structure in Carrageenan–Metal Hydrogels: A General Approach to Porous Metal Sulfides/Carbon Aerogels with Excellent Sodiumâ€ion Storage. Angewandte Chemie - International Edition, 2016, 55, 15925-15928.	7.2	157
117	MXene/Si@SiO _{<i>x</i>} @C Layer-by-Layer Superstructure with Autoadjustable Function for Superior Stable Lithium Storage. ACS Nano, 2019, 13, 2167-2175.	7.3	154
118	Templateless, surfactantless, simple electrochemical route to rapid synthesis of diameter-controlled 3D flowerlike gold microstructure with "clean―surface. Chemical Communications, 2007, , 3163.	2.2	153
119	Intermetallic <i>hcp</i> -PtBi/ <i>fcc</i> -Pt Core/Shell Nanoplates Enable Efficient Bifunctional Oxygen Reduction and Methanol Oxidation Electrocatalysis. ACS Catalysis, 2018, 8, 5581-5590.	5.5	153
120	PtSe ₂ /Pt Heterointerface with Reduced Coordination for Boosted Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2021, 60, 23388-23393.	7.2	153
121	Cyclodextrin–graphene hybrid nanosheets as enhanced sensing platform for ultrasensitive determination of carbendazim. Talanta, 2011, 84, 60-64.	2.9	152
122	Co ₃ O ₄ /Fe _{0.33} Co _{0.66} P Interface Nanowire for Enhancing Water Oxidation Catalysis at High Current Density. Advanced Materials, 2018, 30, e1803551.	11.1	150
123	Atomic cale Core/Shell Structure Engineering Induces Precise Tensile Strain to Boost Hydrogen Evolution Catalysis. Advanced Materials, 2018, 30, e1707301.	11.1	148
124	A Universal Strategy for Intimately Coupled Carbon Nanosheets/MoM Nanocrystals (M = P, S, C, and O) Hierarchical Hollow Nanospheres for Hydrogen Evolution Catalysis and Sodium″on Storage. Advanced Materials, 2018, 30, e1706085.	11.1	147
125	A General Method for the Rapid Synthesis of Hollow Metallic or Bimetallic Nanoelectrocatalysts with Urchinlike Morphology. Chemistry - A European Journal, 2008, 14, 4689-4695.	1.7	146
126	Graphene/N-doped carbon sandwiched nanosheets with ultrahigh nitrogen doping for boosting lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 1423-1431.	5.2	146

#	Article	IF	CITATIONS
127	SERS opens a new way in aptasensor for protein recognition with high sensitivity and selectivity. Chemical Communications, 2007, , 5220.	2.2	145
128	Crumpled Ir Nanosheets Fully Covered on Porous Carbon Nanofibers for Longâ€Life Rechargeable Lithium–CO ₂ Batteries. Advanced Materials, 2018, 30, e1803124.	11.1	144
129	Gold/Platinum Hybrid Nanoparticles Supported on Multiwalled Carbon Nanotube/Silica Coaxial Nanocables:  Preparation and Application as Electrocatalysts for Oxygen Reduction. Journal of Physical Chemistry C, 2008, 112, 2389-2393.	1.5	139
130	3D Vertically Aligned and Interconnected Porous Carbon Nanosheets as Sulfur Immobilizers for High Performance Lithium‣ulfur Batteries. Advanced Energy Materials, 2016, 6, 1502518.	10.2	138
131	High-Efficiency and Low-Cost Hybrid Nanomaterial as Enhancing Electrocatalyst:  Spongelike Au/Pt Core/Shell Nanomaterial with Hollow Cavity. Journal of Physical Chemistry C, 2007, 111, 17104-17109.	1.5	137
132	A General Route to Construct Diverse Multifunctional Fe ₃ O ₄ /Metal Hybrid Nanostructures. Chemistry - A European Journal, 2009, 15, 2416-2424.	1.7	136
133	Tuning Multimetallic Ordered Intermetallic Nanocrystals for Efficient Energy Electrocatalysis. Advanced Energy Materials, 2017, 7, 1602073.	10.2	136
134	Thermolysis of Noble Metal Nanoparticles into Electronâ€Rich Phosphorusâ€Coordinated Noble Metal Single Atoms at Low Temperature. Angewandte Chemie - International Edition, 2019, 58, 14184-14188.	7.2	136
135	Gold nanoparticle/carbon nanotube hybrids as an enhanced material for sensitive amperometric determination of tryptophan. Electrochimica Acta, 2010, 55, 3927-3931.	2.6	135
136	Multimetal Borides Nanochains as Efficient Electrocatalysts for Overall Water Splitting. Small, 2019, 15, e1804212.	5.2	135
137	Recent Advances in Rechargeable Magnesiumâ€Based Batteries for Highâ€Efficiency Energy Storage. Advanced Energy Materials, 2020, 10, 1903591.	10.2	132
138	Functional Micro/Nanostructures: Simple Synthesis and Application in Sensors, Fuel Cells, and Gene Delivery. Accounts of Chemical Research, 2011, 44, 491-500.	7.6	130
139	MoS ₂ Nanosheet Assembling Superstructure with a Three-Dimensional Ion Accessible Site: A New Class of Bifunctional Materials for Batteries and Electrocatalysis. Chemistry of Materials, 2016, 28, 2074-2080.	3.2	130
140	MnO2-Laden Black Phosphorus for MRI-Guided Synergistic PDT, PTT, and Chemotherapy. Matter, 2019, 1, 496-512.	5.0	130
141	Single-atom Pt-I3 sites on all-inorganic Cs2SnI6 perovskite for efficient photocatalytic hydrogen production. Nature Communications, 2021, 12, 4412.	5.8	128
142	Tuning the Shell Number of Multishelled Metal Oxide Hollow Fibers for Optimized Lithium-Ion Storage. ACS Nano, 2017, 11, 6186-6193.	7.3	127
143	Synergetic interaction between neighboring platinum and ruthenium monomers boosts CO oxidation. Chemical Science, 2019, 10, 5898-5905.	3.7	127
144	Efficient Bifacial Passivation with Crosslinked Thioctic Acid for Highâ€Performance Methylammonium Lead Iodide Perovskite Solar Cells. Advanced Materials, 2020, 32, e1905661.	11.1	127

#	Article	IF	CITATIONS
145	Moâ€Based Ultrasmall Nanoparticles on Hierarchical Carbon Nanosheets for Superior Lithium Ion Storage and Hydrogen Generation Catalysis. Advanced Energy Materials, 2017, 7, 1602782.	10.2	123
146	A temperature and electric field-responsive flexible smart film with full broadband optical modulation. Materials Horizons, 2017, 4, 878-884.	6.4	123
147	A Freestanding Flexible Singleâ€Atom Cobaltâ€Based Multifunctional Interlayer toward Reversible and Durable Lithium‧ulfur Batteries. Small Methods, 2020, 4, 1900701.	4.6	123
148	Ionic liquid–graphene hybrid nanosheets as an enhanced material for electrochemical determination of trinitrotoluene. Biosensors and Bioelectronics, 2011, 26, 3475-3481.	5.3	122
149	Self-Powered Sensor for Trace Hg ²⁺ Detection. Analytical Chemistry, 2011, 83, 3968-3972.	3.2	121
150	Hybrid carbon nanowire networks with Fe–P bond active site for efficient oxygen/hydrogen-based electrocatalysis. Nano Energy, 2017, 33, 221-228.	8.2	121
151	Cr _{0.5} Nb _{24.5} O ₆₂ Nanowires with High Electronic Conductivity for High-Rate and Long-Life Lithium-Ion Storage. ACS Nano, 2017, 11, 4217-4224.	7.3	121
152	Hollow Si/SiO _x nanosphere/nitrogen-doped carbon superstructure with a double shell and void for high-rate and long-life lithium-ion storage. Journal of Materials Chemistry A, 2018, 6, 8039-8046.	5.2	120
153	Ultralong Pt-on-Pd bimetallic nanowires with nanoporous surface: nanodendritic structure for enhanced electrocatalytic activity. Chemical Communications, 2010, 46, 1869-1871.	2.2	119
154	Graphene and its derivative-based sensing materials for analytical devices. Journal of Materials Chemistry, 2011, 21, 18503.	6.7	117
155	An integrated sensing system for detection of DNA using new parallel-motif DNA triplex system and graphene–mesoporous silica–gold nanoparticle hybrids. Biomaterials, 2011, 32, 8584-8592.	5.7	117
156	Wrinkled Rh ₂ P Nanosheets as Superior pHâ€Universal Electrocatalysts for Hydrogen Evolution Catalysis. Advanced Energy Materials, 2018, 8, 1801891.	10.2	116
157	Material design and structure optimization for rechargeable lithium-sulfur batteries. Matter, 2021, 4, 1142-1188.	5.0	116
158	One-step electrochemical approach to the synthesis of Graphene/MnO2 nanowall hybrids. Nano Research, 2011, 4, 648-657.	5.8	115
159	Tuning the Aggregation/Disaggregation Behavior of Graphene Quantum Dots by Structure-Switching Aptamer for High-Sensitivity Fluorescent Ochratoxin A Sensor. Analytical Chemistry, 2017, 89, 1704-1709.	3.2	113
160	3D star-like atypical hybrid MOF derived single-atom catalyst boosts oxygen reduction catalysis. Journal of Energy Chemistry, 2021, 55, 355-360.	7.1	113
161	Au Clusters on Pd Nanosheets Selectively Switch the Pathway of Ethanol Electrooxidation: Amorphous/Crystalline Interface Matters. Advanced Energy Materials, 2021, 11, 2100187.	10.2	113
162	Efficient Bifunctional Polyalcohol Oxidation and Oxygen Reduction Electrocatalysts Enabled by Ultrathin PtPdM (M = Ni, Fe, Co) Nanosheets. Advanced Energy Materials, 2019, 9, 1800684.	10.2	112

#	Article	IF	CITATIONS
163	A roll-to-roll process for multi-responsive soft-matter composite films containing Cs _x WO ₃ nanorods for energy-efficient smart window applications. Nanoscale Horizons, 2017, 2, 319-325.	4.1	111
164	Gold nanowire assembling architecture for H2O2 electrochemical sensor. Talanta, 2009, 77, 1510-1517.	2.9	110
165	Ultrathin Pd nanowire as a highly active electrode material for sensitive and selective detection of ascorbic acid. Biosensors and Bioelectronics, 2010, 26, 1056-1061.	5.3	110
166	A new approach to light up DNA/Ag nanocluster-based beacons for bioanalysis. Chemical Science, 2013, 4, 4004.	3.7	109
167	Suppressing Fe–Li Antisite Defects in LiFePO ₄ /Carbon Hybrid Microtube to Enhance the Lithium Ion Storage. Advanced Energy Materials, 2016, 6, 1601549.	10.2	109
168	Engineering Multimetallic Nanocrystals for Highly Efficient Oxygen Reduction Catalysts. Advanced Energy Materials, 2016, 6, 1600236.	10.2	108
169	A General Synthetic Method for High-Entropy Alloy Subnanometer Ribbons. Journal of the American Chemical Society, 2022, 144, 10582-10590.	6.6	108
170	N-Doped Carbon Nanosheet Networks with Favorable Active Sites Triggered by Metal Nanoparticles as Bifunctional Oxygen Electrocatalysts. ACS Energy Letters, 2018, 3, 2914-2920.	8.8	107
171	Ultrathin PtPdâ€Based Nanorings with Abundant Step Atoms Enhance Oxygen Catalysis. Advanced Materials, 2018, 30, e1802136.	11.1	107
172	Superior Bifunctional Liquid Fuel Oxidation and Oxygen Reduction Electrocatalysis Enabled by PtNiPd Core–Shell Nanowires. Advanced Materials, 2017, 29, 1603774.	11.1	106
173	Atomically Dispersed Co–P ₃ on CdS Nanorods with Electronâ€Rich Feature Boosts Photocatalysis. Advanced Materials, 2020, 32, e1904249.	11.1	105
174	The marriage and integration of nanostructures with different dimensions for synergistic electrocatalysis. Energy and Environmental Science, 2017, 10, 321-330.	15.6	104
175	Ni _{1â^'} <i>_x</i> Co <i>_x</i> Se ₂ C/Znln ₂ S _{4 Hybrid Nanocages with Strong 2D/2D Heteroâ€Interface Interaction Enable Efficient H₂â€Releasing Photocatalysis. Advanced Functional Materials, 2021, 31, 2100923.}	 7.8	104
176	Fabrication of Iron Oxide Core/Gold Shell Submicrometer Spheres with Nanoscale Surface Roughness for Efficient Surface-Enhanced Raman Scattering. Journal of Physical Chemistry C, 2009, 113, 7009-7014.	1.5	103
177	Palladium Single Atoms on TiO ₂ as a Photocatalytic Sensing Platform for Analyzing the Organophosphorus Pesticide Chlorpyrifos. Angewandte Chemie - International Edition, 2020, 59, 232-236.	7.2	103
178	Rapid, General Synthesis of PdPt Bimetallic Alloy Nanosponges and Their Enhanced Catalytic Performance for Ethanol/Methanol Electrooxidation in an Alkaline Medium. Chemistry - A European Journal, 2013, 19, 1104-1111.	1.7	100
179	Coupled s-p-d Exchange in Facet-Controlled Pd3Pb Tripods Enhances Oxygen Reduction Catalysis. CheM, 2018, 4, 359-371.	5.8	100
180	G-Quadruplex-based DNAzyme for colorimetric detection ofcocaine: Using magnetic nanoparticles as the separation and amplification element. Analyst, The, 2011, 136, 493-497.	1.7	99

#	Article	IF	CITATIONS
181	Synthesis and assembly of Pd nanoparticles on graphene for enhanced electrooxidation of formic acid. Nanoscale, 2013, 5, 160-163.	2.8	99
182	Nitrogen-Doped Hierarchical Porous Carbon Nanowhisker Ensembles on Carbon Nanofiber for High-Performance Supercapacitors. ACS Sustainable Chemistry and Engineering, 2014, 2, 1525-1533.	3.2	99
183	Electronic-Structure Tuning of Water-Splitting Nanocatalysts. Trends in Chemistry, 2019, 1, 259-271.	4.4	99
184	Highly open rhombic dodecahedral PtCu nanoframes. Chemical Communications, 2015, 51, 9722-9725.	2.2	98
185	3D Platinum–Lead Nanowire Networks as Highly Efficient Ethylene Glycol Oxidation Electrocatalysts. Small, 2016, 12, 4464-4470.	5.2	98
186	Atomically Thin Transitionâ€Metal Dichalcogenides for Electrocatalysis and Energy Storage. Small Methods, 2017, 1, 1700156.	4.6	98
187	Lattice -Mismatch-Induced Ultrastable 1T-Phase MoS ₂ –Pd/Au for Plasmon-Enhanced Hydrogen Evolution. Nano Letters, 2019, 19, 2758-2764.	4.5	98
188	A Dual Protection System for Heterostructured 3D CNT/CoSe ₂ /C as High Areal Capacity Anode for Sodium Storage. Advanced Science, 2020, 7, 1902907.	5.6	97
189	Three-Dimensional Pt-on-Au Bimetallic Dendritic Nanoparticle: One-Step, High-Yield Synthesis and Its Bifunctional Plasmonic and Catalytic Properties. Journal of Physical Chemistry C, 2010, 114, 15337-15342.	1.5	96
190	Metalâ€organic frameworkâ€derived Fe/Cuâ€substituted Co nanoparticles embedded in CNTsâ€grafted carbon polyhedron for Znâ€air batteries. , 2020, 2, 283-293.		95
191	One Nanometer PtIr Nanowires as High-Efficiency Bifunctional Catalysts for Electrosynthesis of Ethanol into High Value-Added Multicarbon Compound Coupled with Hydrogen Production. Journal of the American Chemical Society, 2021, 143, 10822-10827.	6.6	95
192	Carbon Nanotube/Silica Coaxial Nanocable as a Three-Dimensional Support for Loading Diverse Ultra-High-Density Metal Nanostructures: Facile Preparation and Use as Enhanced Materials for Electrochemical Devices and SERS. Chemistry of Materials, 2009, 21, 2247-2257.	3.2	94
193	Irâ€Based Alloy Nanoflowers with Optimized Hydrogen Binding Energy as Bifunctional Electrocatalysts for Overall Water Splitting. Small Methods, 2020, 4, 1900129.	4.6	93
194	Integrated Self-Powered Microchip Biosensor for Endogenous Biological Cyanide. Analytical Chemistry, 2010, 82, 4283-4287.	3.2	92
195	A facile route to monodisperse MPd (M = Co or Cu) alloy nanoparticles and their catalysis for electrooxidation of formic acid. Nanoscale, 2014, 6, 6970-6973.	2.8	92
196	Ultrathin RuRh Alloy Nanosheets Enable High-Performance Lithium-CO2 Battery. Matter, 2020, 2, 1494-1508.	5.0	91
197	Two Birds with One Stone: Interfacial Engineering of Multifunctional Janus Separator for Lithium–Sulfur Batteries. Advanced Materials, 2022, 34, e2107638.	11.1	91
198	Trimetallic PtSnRh Wavy Nanowires as Efficient Nanoelectrocatalysts for Alcohol Electrooxidation. ACS Applied Materials & Interfaces, 2015, 7, 15061-15067.	4.0	90

#	Article	IF	CITATIONS
199	Identifying Luminol Electrochemiluminescence at the Cathode via Single-Atom Catalysts Tuned Oxygen Reduction Reaction. Journal of the American Chemical Society, 2022, 144, 7741-7749.	6.6	90
200	Solid-State Label-Free Integrated Aptasensor Based on Graphene-Mesoporous Silica–Gold Nanoparticle Hybrids and Silver Microspheres. Analytical Chemistry, 2011, 83, 8035-8040.	3.2	89
201	Hierarchical Pt/Pt _{<i>x</i>} Pb Core/Shell Nanowires as Efficient Catalysts for Electrooxidation of Liquid Fuels. Chemistry of Materials, 2016, 28, 4447-4452.	3.2	88
202	Synergistic Effects between Atomically Dispersed Feâ^'Nâ^'C and Câ^'Sâ^'C for the Oxygen Reduction Reaction in Acidic Media. Angewandte Chemie, 2017, 129, 13988-13992.	1.6	88
203	Co-doped 1T-MoS2 nanosheets embedded in N, S-doped carbon nanobowls for high-rate and ultra-stable sodium-ion batteries. Nano Research, 2019, 12, 2218-2223.	5.8	88
204	Platinfreie Nanomaterialien für die Sauerstoffreduktion. Angewandte Chemie, 2016, 128, 2698-2726.	1.6	87
205	Rectangular Silver Nanorods: Controlled Preparation, Liquidâ ^{~2} Liquid Interface Assembly, and Application in Surface-Enhanced Raman Scattering. Crystal Growth and Design, 2009, 9, 372-377.	1.4	86
206	Recent progress on precious metal single atom materials for water splitting catalysis. SusMat, 2021, 1, 194-210.	7.8	86
207	Subâ€Monolayer YO <i>_x</i> /MoO <i>_x</i> on Ultrathin Pt Nanowires Boosts Alcohol Oxidation Electrocatalysis. Advanced Materials, 2021, 33, e2103762.	11.1	86
208	Ultrathin Layered SnSe Nanoplates for Low Voltage, Highâ€Rate, and Longâ€Life Alkali–Ion Batteries. Small, 2017, 13, 1702228.	5.2	85
209	3D Space-Confined Pyrolysis of Double-Network Aerogels Containing In-Fe Cyanogel and Polyaniline: A New Approach to Hierarchically Porous Carbon with Exclusive Fe-N <i> _x </i> Active Sites for Oxygen Reduction Catalysis. Small Methods, 2017, 1, 1700167.	4.6	85
210	Atomically Dispersed Cu Catalyst for Efficient Chemoselective Hydrogenation Reaction. Nano Letters, 2021, 21, 10284-10291.	4.5	85
211	Recent advances in new luminescent nanomaterials for electrochemiluminescence sensors. RSC Advances, 2012, 2, 3579.	1.7	84
212	Defects and Interfaces on PtPb Nanoplates Boost Fuel Cell Electrocatalysis. Small, 2018, 14, 1702259.	5.2	84
213	Silk-Derived Highly Active Oxygen Electrocatalysts for Flexible and Rechargeable Zn–Air Batteries. Chemistry of Materials, 2019, 31, 1023-1029.	3.2	84
214	Atomic PdAu Interlayer Sandwiched into Pd/Pt Core/Shell Nanowires Achieves Superstable Oxygen Reduction Catalysis. ACS Nano, 2020, 14, 11570-11578.	7.3	84
215	Synthesis and Bio-Imaging Application of Highly Luminescent Mercaptosuccinic Acid-Coated CdTe Nanocrystals. PLoS ONE, 2008, 3, e2222.	1.1	83
216	Cobalt-Carbon Core-Shell Nanoparticles Aligned on Wrinkle of N-Doped Carbon Nanosheets with Pt-Like Activity for Oxygen Reduction. Small, 2016, 12, 2839-2845.	5.2	83

#	Article	IF	CITATIONS
217	"Tai Chi―philosophy driven rigid-flexible hybrid ionogel electrolyte for high-performance lithium battery. Nano Energy, 2018, 47, 35-42.	8.2	83
218	Barrier-free Interface Electron Transfer on PtFe-Fe2C Janus-like Nanoparticles Boosts Oxygen Catalysis. CheM, 2018, 4, 1153-1166.	5.8	82
219	Single-Walled Carbon Nanotube Induced Optimized Electron Polarization of Rhodium Nanocrystals To Develop an Interface Catalyst for Highly Efficient Electrocatalysis. ACS Catalysis, 2018, 8, 8092-8099.	5.5	82
220	WO <i>_x</i> ‣urface Decorated PtNi@Pt Dendritic Nanowires as Efficient pHâ€Universal Hydrogen Evolution Electrocatalysts. Advanced Energy Materials, 2021, 11, 2003192.	10.2	82
221	Noble metal-based 1D and 2D electrocatalytic nanomaterials: Recent progress, challenges and perspectives. Nano Today, 2019, 28, 100774.	6.2	81
222	Tunable Covalent Organic Frameworks with Different Heterocyclic Nitrogen Locations for Efficient Cr(VI) Reduction, <i>Escherichia coli</i> Disinfection, and Paracetamol Degradation under Visible-Light Irradiation. Environmental Science & Technology, 2021, 55, 5371-5381.	4.6	79
223	Dumbbell-like Au-Fe ₃ O ₄ nanoparticles: a new nanostructure for supercapacitors. Nanoscale, 2015, 7, 4890-4893.	2.8	78
224	Tunable Free-Standing Core–Shell CNT@MoSe ₂ Anode for Lithium Storage. ACS Applied Materials & Interfaces, 2018, 10, 14622-14631.	4.0	78
225	Advanced Multifunctional Electrocatalysts for Energy Conversion. ACS Energy Letters, 2019, 4, 1672-1680.	8.8	78
226	Design of Ultrathin Ptâ€Based Multimetallic Nanostructures for Efficient Oxygen Reduction Electrocatalysis. Small, 2017, 13, 1702156.	5.2	77
227	Moltenâ€Saltâ€Assisted Synthesis of 3D Holey Nâ€Doped Graphene as Bifunctional Electrocatalysts for Rechargeable Zn–Air Batteries. Small Methods, 2018, 2, 1800144.	4.6	77
228	MOF derived Co3O4/N-doped carbon nanotubes hybrids as efficient catalysts for sensitive detection of H2O2 and glucose. Chinese Chemical Letters, 2020, 31, 774-778.	4.8	77
229	2D Thin Nanoflakes Assembled on Mesoporous Carbon Nanorods for Enhancing Electrocatalysis and for Improving Asymmetric Supercapacitors. Advanced Functional Materials, 2016, 26, 7766-7774.	7.8	75
230	Lavender-Like Ga-Doped Pt ₃ Co Nanowires for Highly Stable and Active Electrocatalysis. ACS Catalysis, 2020, 10, 3018-3026.	5.5	75
231	Facile electrochemical approach to fabricate hierarchical flowerlike gold microstructures: Electrodeposited superhydrophobic surface. Electrochemistry Communications, 2008, 10, 95-99.	2.3	74
232	Pd@Au Bimetallic Nanoplates Decorated Mesoporous MnO ₂ for Synergistic Nucleusâ€Targeted NIRâ€II Photothermal and Hypoxiaâ€Relieved Photodynamic Therapy. Advanced Healthcare Materials, 2020, 9, e1901528.	3.9	74
233	Shortâ€Range Diffusion Enables General Synthesis of Mediumâ€Entropy Alloy Aerogels. Advanced Materials, 2022, 34, .	11.1	74
234	Facile synthesis of trimetallic AuPtPd alloy nanowires and their catalysis for ethanol electrooxidation. Journal of Materials Chemistry, 2012, 22, 14851.	6.7	73

#	Article	IF	CITATIONS
235	Anti-dissolution Pt single site with Pt(OH)(O3)/Co(P) coordination for efficient alkaline water splitting electrolyzer. Nature Communications, 2022, 13, .	5.8	73
236	Lewisâ€Acidic PtIr Multipods Enable Highâ€Performance Li–O ₂ Batteries. Angewandte Chemie - International Edition, 2021, 60, 26592-26598.	7.2	72
237	A Novel Urchinlike Gold/Platinum Hybrid Nanocatalyst with Controlled Size. Journal of Physical Chemistry C, 2008, 112, 13510-13515.	1.5	71
238	Porous ZrNb ₂₄ O ₆₂ nanowires with pseudocapacitive behavior achieve high-performance lithium-ion storage. Journal of Materials Chemistry A, 2017, 5, 22297-22304.	5.2	71
239	MoB/g ₃ N ₄ Interface Materials as a Schottky Catalyst to Boost Hydrogen Evolution. Angewandte Chemie, 2018, 130, 505-509.	1.6	71
240	Proton selective adsorption on Pt–Ni nano-thorn array electrodes for superior hydrogen evolution activity. Energy and Environmental Science, 2021, 14, 1594-1601.	15.6	71
241	Cubic superstructures composed of PtPd alloy nanocubes and their enhanced electrocatalysis for methanol oxidation. Chemical Communications, 2016, 52, 12737-12740.	2.2	70
242	Raspberry-like Hierarchical Au/Pt Nanoparticle Assembling Hollow Spheres with Nanochannels: An Advanced Nanoelectrocatalyst for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2009, 113, 5485-5492.	1.5	69
243	Trimetallic Oxyhydroxide Coralloids for Efficient Oxygen Evolution Electrocatalysis. Angewandte Chemie, 2017, 129, 4573-4577.	1.6	68
244	Noble metal-free electrocatalytic materials for water splitting in alkaline electrolyte. EnergyChem, 2021, 3, 100053.	10.1	68
245	Facet and dimensionality control of Pt nanostructures for efficient oxygen reduction and methanol oxidation electrocatalysts. Nano Research, 2016, 9, 2811-2821.	5.8	67
246	Designing noble metal single-atom-loaded two-dimension photocatalyst for N2 and CO2 reduction via anion vacancy engineering. Science Bulletin, 2020, 65, 720-725.	4.3	67
247	Intermetallic Pd ₃ Pb Nanoplates Enhance Oxygen Reduction Catalysis with Excellent Methanol Tolerance. Small Methods, 2018, 2, 1700331.	4.6	66
248	Orthorhombic Cobalt Ditelluride with Te Vacancy Defects Anchoring on Elastic MXene Enables Efficient Potassiumâ€lon Storage. Advanced Materials, 2021, 33, e2100272.	11.1	66
249	Enhanced Cathode and Anode Compatibility for Boosting Both Energy and Power Densities of Na/K-Ion Hybrid Capacitors. Matter, 2019, 1, 893-910.	5.0	65
250	Ultrathin two-dimensional metallic nanocrystals for renewable energy electrocatalysis. Materials Today, 2019, 23, 45-56.	8.3	64
251	Facile fabrication of large area of aggregated gold nanorods film for efficient surface-enhanced Raman scattering. Journal of Colloid and Interface Science, 2008, 318, 82-87.	5.0	63
252	Pt Nanoparticles Supported on TiO ₂ Colloidal Spheres with Nanoporous Surface: Preparation and Use as an Enhancing Material for Biosensing Applications. Journal of Physical Chemistry C, 2009, 113, 13023-13028.	1.5	61

#	Article	IF	CITATIONS
253	Electrochemiluminescence detection of NADH and ethanol based on partial sulfonation of sol–gel network with gold nanoparticles. Biosensors and Bioelectronics, 2009, 24, 2273-2276.	5.3	59
254	Electrocatalytic Interface Based on Novel Carbon Nanomaterials for Advanced Electrochemical Sensors. ChemCatChem, 2015, 7, 2744-2764.	1.8	59
255	Atomic-Thick PtNi Nanowires Assembled on Graphene for High-Sensitivity Extracellular Hydrogen Peroxide Sensors. ACS Applied Materials & Interfaces, 2017, 9, 34715-34721.	4.0	59
256	A highly efficient atomically thin curved PdIr bimetallene electrocatalyst. National Science Review, 2021, 8, nwab019.	4.6	59
257	Synthesis of phospholipid monolayer membrane functionalized graphene for drug delivery. Journal of Materials Chemistry, 2012, 22, 20634.	6.7	58
258	One-Step Carbonization Synthesis of Hollow Carbon Nanococoons with Multimodal Pores and Their Enhanced Electrochemical Performance for Supercapacitors. ACS Applied Materials & Interfaces, 2014, 6, 2192-2198.	4.0	57
259	Local Coordination Regulation through Tuning Atomicâ€Scale Cavities of Pd Metallene toward Efficient Oxygen Reduction Electrocatalysis. Advanced Materials, 2022, 34, e2202084.	11.1	57
260	Ordered PdCuâ€Based Nanoparticles as Bifunctional Oxygenâ€Reduction and Ethanolâ€Oxidation Electrocatalysts. Angewandte Chemie, 2016, 128, 9176-9181.	1.6	56
261	Self-Volatilization Approach to Mesoporous Carbon Nanotube/Silver Nanoparticle Hybrids: The Role of Silver in Boosting Li Ion Storage. ACS Nano, 2016, 10, 1648-1654.	7.3	56
262	A new method for developing defect-rich graphene nanoribbons/onion-like carbon@Co nanoparticles hybrid materials as an excellent catalyst for oxygen reactions. Nanoscale, 2017, 9, 1738-1744.	2.8	56
263	Cyclodextrin functionalized graphene–gold nanoparticle hybrids with strong supramolecular capability for electrochemical thrombin aptasensor. Biosensors and Bioelectronics, 2015, 68, 429-436.	5.3	55
264	Trifunctional Fishbone-like PtCo/Ir Enables High-Performance Zinc–Air Batteries to Drive the Water-Splitting Catalysis. Chemistry of Materials, 2019, 31, 8136-8144.	3.2	55
265	Intermetallic PtBi Nanoplates Boost Oxygen Reduction Catalysis with Superior Tolerance over Chemical Fuels. Advanced Science, 2020, 7, 1800178.	5.6	55
266	Partially reduced Pd single atoms on CdS nanorods enable photocatalytic reforming of ethanol into high value-added multicarbon compound. CheM, 2021, 7, 1033-1049.	5.8	55
267	Target-induced conjunction of split aptamer as new chiral selector for oligopeptide on graphene–mesoporous silica–gold nanoparticle hybrids modified sensing platform. Chemical Communications, 2012, 48, 799-801.	2.2	54
268	Carbon Nanotube–Bilirubin Oxidase Bioconjugate as a New Biofuel Cell Label for Self-Powered Immunosensor. Analytical Chemistry, 2014, 86, 11782-11788.	3.2	54
269	Spiny Pd/PtFe core/shell nanotubes with rich high-index facets for efficient electrocatalysis. Science Bulletin, 2021, 66, 44-51.	4.3	54
270	A General Route to Prepare One- and Three-Dimensional Carbon Nanotube/Metal Nanoparticle Composite Nanostructures. Langmuir, 2007, 23, 6352-6357.	1.6	53

#	Article	IF	CITATIONS
271	Bifunctional Nanocatalyst of Bimetallic Nanoparticle/TiO ₂ with Enhanced Performance in Electrochemical and Photoelectrochemical Applications. Langmuir, 2010, 26, 11401-11406.	1.6	52
272	A Simple Route for the Synthesis of Morphology-Controlled and SERS-Active Ag Dendrites with Near-Infrared Absorption. Journal of Physical Chemistry C, 2011, 115, 10315-10320.	1.5	52
273	Dual Tuning of Biomass-Derived Hierarchical Carbon Nanostructures for Supercapacitors: the Role of Balanced Meso/Microporosity and Graphene. Scientific Reports, 2015, 5, 15936.	1.6	51
274	Superior oxygen reduction electrocatalysis enabled by integrating hierarchical pores, Fe ₃ C nanoparticles and bamboo-like carbon nanotubes. Nanoscale, 2016, 8, 959-964.	2.8	51
275	A new dual-ion battery based on amorphous carbon. Science Bulletin, 2019, 64, 1634-1642.	4.3	51
276	Grafting Benzenediazonium Tetrafluoroborate onto LiNi <i>_x</i> Co <i>_y</i> Mn <i>_z</i> O ₂ Materials Achieves Subzeroâ€Temperature Highâ€Capacity Lithiumâ€Ion Storage via a Diazonium Softâ€Chemistry Method Advanced Energy Materials, 2019, 9, 1802946.	.10.2	50
277	Achieving Highâ€Performance 3D K ⁺ â€Preâ€intercalated Ti ₃ C ₂ T _{<i>x</i>} MXene for Potassiumâ€ion Hybrid Capacitors via Regulating Electrolyte Solvation Structure. Angewandte Chemie - International Edition, 2021, 60, 26246-26253.	7.2	50
278	Facile Synthesis of Platinum Nanoelectrocatalyst with Urchinlike Morphology. Journal of Physical Chemistry C, 2008, 112, 13372-13377.	1.5	49
279	A silk derived carbon fiber mat modified with Au@Pt urchilike nanoparticles: A new platform as electrochemical microbial biosensor. Biosensors and Bioelectronics, 2010, 25, 2189-2193.	5.3	49
280	Rational Design of Hierarchical TiO ₂ /Epitaxially Aligned MoS ₂ –Carbon Coupled Interface Nanosheets Core/Shell Architecture for Ultrastable Sodiumâ€ion and Lithium–Sulfur Batteries. Small Methods, 2018, 2, 1800119.	4.6	49
281	SnS ₂ Nanosheets Anchored on Nitrogen and Sulfur Co-Doped MXene Sheets for High-Performance Potassium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 17668-17676.	4.0	49
282	A biofuel cell with a single-walled carbon nanohorn-based bioanode operating at physiological condition. Biosensors and Bioelectronics, 2010, 25, 1544-1547.	5.3	48
283	Face-to-face engineering of ultrathin Pd nanosheets on amorphous carbon nitride for efficient photocatalytic hydrogen production. Science China Materials, 2019, 62, 351-358.	3.5	48
284	A Nonâ€Invasive Nanoprobe for In Vivo Photoacoustic Imaging of Vulnerable Atherosclerotic Plaque. Advanced Materials, 2020, 32, e2000037.	11.1	48
285	A Unique Gas-Migration, Trapping, and Emitting Strategy for High-Loading Single Atomic Cd Sites for Carbon Dioxide Electroreduction. Nano Letters, 2021, 21, 4262-4269.	4.5	48
286	Structural Regulation of Pdâ€Based Nanoalloys for Advanced Electrocatalysis. Small Science, 2021, 1, 2100061.	5.8	48
287	Templateless, Surfactantless, Electrochemical Route to a Cuprous Oxide Microcrystal:  From Octahedra to Monodisperse Colloid Spheres. Inorganic Chemistry, 2007, 46, 9537-9539.	1.9	47
288	Bifunctional Au@Pt hybrid nanorods. Journal of Colloid and Interface Science, 2007, 315, 363-368.	5.0	47

#	Article	IF	CITATIONS
289	Metal nanomaterial-based self-assembly: Development, electrochemical sensing and SERS applications. Journal of Materials Chemistry, 2011, 21, 16704.	6.7	47
290	Engineering DNA Three-Way Junction with Multifunctional Moieties: Sensing Platform for Bioanalysis. Analytical Chemistry, 2015, 87, 11295-11300.	3.2	47
291	Metal Single Atom Strategy Greatly Boosts Photocatalytic Methyl Activation and C–C Coupling for the Coproduction of High-Value-Added Multicarbon Compounds and Hydrogen. ACS Catalysis, 2020, 10, 9109-9114.	5.5	47
292	Alternate assemblies of polyelectrolyte functionalized carbon nanotubes and platinum nanoparticles as tunable electrocatalysts for dioxygen reduction. Electrochemistry Communications, 2007, 9, 827-832.	2.3	46
293	Engineering e _g Orbital Occupancy of Pt with Au Alloying Enables Reversible Liâ ^{°°} O ₂ Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	46
294	Constructing Carbonâ€Nanotube/Metal Hybrid Nanostructures Using Homogeneous TiO ₂ as a Spacer. Small, 2008, 4, 1133-1138.	5.2	45
295	A Facile and Controllable Strategy to Synthesize Auâ^'Ag Alloy Nanoparticles within Polyelectrolyte Multilayer Nanoreactors upon Thermal Reduction. Langmuir, 2010, 26, 6713-6719.	1.6	45
296	Highâ€Efficiency Encapsulation of Pt Nanoparticles into the Channel of Carbon Nanotubes as an Enhanced Electrocatalyst for Methanol Oxidation. Chemistry - A European Journal, 2013, 19, 16087-16092.	1.7	45
297	Hydrogenated Na ₂ Ti ₃ O ₇ Epitaxially Grown on Flexible N-Doped Carbon Sponge for Potassium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 37974-37980.	4.0	45
298	Carbonâ€based anode materials for potassiumâ€ion batteries: From material, mechanism to performance. SmartMat, 2021, 2, 176-201.	6.4	45
299	Liâ^'N Interaction Induced Deep Eutectic Gel Polymer Electrolyte for High Performance Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	45
300	Pd Nanowires as New Biosensing Materials for Magnified Fluorescent Detection of Nucleic Acid. Analytical Chemistry, 2012, 84, 3568-3573.	3.2	44
301	Enhanced electron transfer and light absorption on imino polymer capped PdAg nanowire networks for efficient room-temperature dehydrogenation of formic acid. Journal of Materials Chemistry A, 2018, 6, 1979-1984.	5.2	43
302	Shape-Controlled Narrow-Gap SnTe Nanostructures: From Nanocubes to Nanorods and Nanowires. Journal of the American Chemical Society, 2015, 137, 15074-15077.	6.6	42
303	Interface modulation of twinned PtFe nanoplates branched 3D architecture for oxygen reduction catalysis. Science Bulletin, 2020, 65, 97-104.	4.3	42
304	Boosted Oxygen Evolution Reactivity via Atomic Iron Doping in Cobalt Carbonate Hydroxide Hydrate. ACS Applied Materials & Interfaces, 2020, 12, 40220-40228.	4.0	42
305	A mechanistic study of electrode materials for rechargeable batteries beyond lithium ions by <i>in situ</i> transmission electron microscopy. Energy and Environmental Science, 2021, 14, 2670-2707.	15.6	42
306	Controlling and self assembling of monodisperse platinum nanocubes as efficient methanol oxidation electrocatalysts. Chemical Communications, 2015, 51, 3529-3532.	2.2	41

#	Article	IF	CITATIONS
307	A novel sensitive solid-state electrochemiluminescence sensor material: Ru(bpy)32+ doped SiO2@MWNTs coaxial nanocable. Electrochemistry Communications, 2007, 9, 1252-1257.	2.3	40
308	To boost c-type cytochrome wire efficiency of electrogenic bacteria with Fe3O4/Au nanocomposites. Chemical Communications, 2010, 46, 7172.	2.2	40
309	Lightâ€Driven, Membraneless, Hydrogen Peroxide Based Fuel Cells. Advanced Energy Materials, 2015, 5, 1400424.	10.2	40
310	An efficient ultrathin PtFeNi Nanowire/Ionic liquid conjugate electrocatalyst. Applied Catalysis B: Environmental, 2019, 256, 117828.	10.8	40
311	Crâ€Doped Pd Metallene Endows a Practical Formaldehyde Sensor New Limit and High Selectivity. Advanced Materials, 2022, 34, e2105276.	11.1	40
312	Organic–inorganic hybrid material for the cells immobilization: Long-term viability mechanism and application in BOD sensors. Biosensors and Bioelectronics, 2009, 25, 523-526.	5.3	39
313	Strongly Coupled Carbon Nanosheets/Molybdenum Carbide Nanocluster Hollow Nanospheres for Highâ€Performance Aprotic Li–O ₂ Battery. Small, 2018, 14, e1704366.	5.2	39
314	Cesium Lead Bromide Perovskite-Based Lithium–Oxygen Batteries. Nano Letters, 2021, 21, 4861-4867.	4.5	39
315	Intimately coupled WS2 nanosheets in hierarchical hollow carbon nanospheres as the high-performance anode material for lithium-ion storage. Rare Metals, 2022, 41, 1245-1254.	3.6	39
316	High-density defects on PdAg nanowire networks as catalytic hot spots for efficient dehydrogenation of formic acid and reduction of nitrate. Nanoscale, 2017, 9, 9305-9309.	2.8	38
317	Twenty Second Synthesis of Pd Nanourchins with High Electrochemical Activity through an Electrochemical Route. Langmuir, 2010, 26, 17816-17820.	1.6	37
318	New Approach to Create TiO ₂ (B)/Carbon Core/Shell Nanotubes: Ideal Structure for Enhanced Lithium Ion Storage. ACS Applied Materials & Interfaces, 2016, 8, 18815-18821.	4.0	37
319	Enhanced bifunctional fuel cell catalysis <i>via</i> Pd/PtCu core/shell nanoplates. Chemical Communications, 2018, 54, 1315-1318.	2.2	37
320	Layer-by-layer assembly of carbon nanotubes and Prussian blue nanoparticles: A potential tool for biosensing devices. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 317, 394-399.	2.3	36
321	Tuning and understanding the phase interface of TiO ₂ nanoparticles for more efficient lithium ion storage. Nanoscale, 2015, 7, 12833-12838.	2.8	36
322	Controlling core/shell Au/FePt nanoparticle electrocatalysis via changing the core size and shell thickness. Nanoscale, 2016, 8, 2626-2631.	2.8	36
323	Modulating the surface segregation of PdCuRu nanocrystals for enhanced all-pH hydrogen evolution electrocatalysis. Journal of Materials Chemistry A, 2019, 7, 20151-20157.	5.2	36
324	Pt-on-Pd Dendritic Nanosheets with Enhanced Bifunctional Fuel Cell Catalytic Performance. ACS Applied Materials & Interfaces, 2020, 12, 30336-30342.	4.0	36

#	Article	IF	CITATIONS
325	Biaxially Compressive Strain in Ni/Ru Core/Shell Nanoplates Boosts Li–CO ₂ Batteries. Advanced Materials, 2022, 34, .	11.1	36
326	Carbon-coated ultrathin metallic V5Se8 nanosheet for high-energy-density and robust potassium storage. Energy Storage Materials, 2021, 35, 1-11.	9.5	35
327	High Optical Gain of Solutionâ€Processed Mixed ation CsPbBr ₃ Thin Films towards Enhanced Amplified Spontaneous Emission. Advanced Functional Materials, 2021, 31, 2102210.	7.8	35
328	Concave Pdâ€Pt Core–Shell Nanocrystals with Ultrathin Pt Shell Feature and Enhanced Catalytic Performance. Small, 2016, 12, 706-712.	5.2	34
329	3D PtFe Clusters with Cubeâ€inâ€Cube Structure Enhance Oxygen Reduction Catalysis and Electrochemical Sensing. Small Methods, 2018, 2, 1800073.	4.6	34
330	Highâ€Index Faceted PdPtCu Ultrathin Nanorings Enable Highly Active and Stable Oxygen Reduction Electrocatalysis. Small Methods, 2021, 5, e2100154.	4.6	34
331	Construction of single-atom catalysts for electro-, photo- and photoelectro-catalytic applications: State-of-the-art, opportunities, and challenges. Materials Today, 2022, 53, 217-237.	8.3	34
332	Facile synthesis of poly(o-phenylenediamine) microfibrils using cupric sulfate as the oxidant. Materials Letters, 2008, 62, 3240-3242.	1.3	33
333	Recent progress on synthesis, structure and electrocatalytic applications of MXenes. FlatChem, 2019, 17, 100129.	2.8	33
334	Rh-doped PdAg nanoparticles as efficient methanol tolerance electrocatalytic materials for oxygen reduction. Science Bulletin, 2019, 64, 54-62.	4.3	33
335	PtSe ₂ /Pt Heterointerface with Reduced Coordination for Boosted Hydrogen Evolution Reaction. Angewandte Chemie, 2021, 133, 23576-23581.	1.6	33
336	Effect of Freezeâ^'Thawing on Lipid Bilayer-Protected Gold Nanoparticles. Langmuir, 2008, 24, 3407-3411.	1.6	32
337	Implementation of Arithmetic Functions on a Simple and Universal Molecular Beacon Platform. Advanced Science, 2015, 2, 1500054.	5.6	32
338	Surface and Near-Surface Engineering of PtCo Nanowires at Atomic Scale for Enhanced Electrochemical Sensing and Catalysis. Chemistry of Materials, 2018, 30, 6660-6667.	3.2	32
339	Coupled and decoupled hierarchical carbon nanomaterials toward high-energy-density quasi-solid-state Na-Ion hybrid energy storage devices. Energy Storage Materials, 2019, 23, 530-538.	9.5	32
340	<scp>Singleâ€atom</scp> catalysts supported on ordered porous materials: Synthetic strategies and applications. InformaÄnÄ-MateriÄily, 2022, 4, .	8.5	32
341	Industrialâ€Level CO ₂ Electroreduction Using Solidâ€Electrolyte Devices Enabled by Highâ€Loading Nickel Atomic Site Catalysts. Advanced Energy Materials, 2022, 12, .	10.2	32
342	A dual templating route to three-dimensionally ordered mesoporous carbon nanonetworks: tuning the mesopore type for electrochemical performance optimization. Journal of Materials Chemistry A, 2015, 3, 18867-18873.	5.2	31

#	Article	IF	CITATIONS
343	One-Pot, High-Yield Synthesis of Size-Controlled Gold Particles with Narrow Size Distribution. Inorganic Chemistry, 2007, 46, 6740-6743.	1.9	30
344	Ag dendrites with rod-like tips: synthesis, characterization and fabrication of superhydrophobic surfaces. Nanoscale, 2011, 3, 2241.	2.8	30
345	SnSe2 nanocrystals coupled with hierarchical porous carbon microspheres for long-life sodium ion battery anode. Science China Materials, 2020, 63, 483-491.	3.5	30
346	High Valence M-Incorporated PdCu Nanoparticles (M = Ir, Rh, Ru) for Water Electrolysis in Alkaline Solution. Nano Letters, 2021, 21, 5774-5781.	4.5	30
347	Novel Te/Pt Hybrid Nanowire with Nanoporous Surface: A Catalytically Active Nanoelectrocatalyst. Journal of Physical Chemistry C, 2010, 114, 4797-4802.	1.5	29
348	High electrocatalytic performance inspired by crystalline/amorphous interface in PtPb nanoplate. Nanoscale, 2018, 10, 11357-11364.	2.8	29
349	Ethanolâ€Precipitable, Silicaâ€Passivated Perovskite Nanocrystals Incorporated into Polystyrene Microspheres for Longâ€Term Storage and Reusage. Angewandte Chemie - International Edition, 2019, 58, 2799-2803.	7.2	29
350	Gram-Scale, Low-Cost, Rapid Fabrication of High-Quality Width-Controlled One-Dimensional Conducting Polymer Nanobelts. Chemistry of Materials, 2007, 19, 4621-4623.	3.2	28
351	Multiple pH-responsive graphene composites by non-covalent modification with chitosan. Talanta, 2012, 101, 151-156.	2.9	28
352	Li ₄ Ti ₅ O ₁₂ –TiO ₂ /MoO ₂ nanoclusters-embedded into carbon nanosheets core/shell porous superstructures boost lithium ion storage. Journal of Materials Chemistry A, 2017, 5, 12096-12102.	5.2	28
353	Thermolysis of Noble Metal Nanoparticles into Electronâ€Rich Phosphorusâ€Coordinated Noble Metal Single Atoms at Low Temperature. Angewandte Chemie, 2019, 131, 14322-14326.	1.6	28
354	Long-life lithium-O2 battery achieved by integrating quasi-solid electrolyte and highly active Pt3Co nanowires catalyst. Energy Storage Materials, 2020, 24, 707-713.	9.5	28
355	Facile electrochemical route to directly fabricate hierarchical spherical cupreous microstructures: Toward superhydrophobic surface. Electrochemistry Communications, 2008, 10, 655-658.	2.3	26
356	Doubleâ€Helix Structure in Carrageenan–Metal Hydrogels: A General Approach to Porous Metal Sulfides/Carbon Aerogels with Excellent Sodiumâ€ l on Storage. Angewandte Chemie, 2016, 128, 16157-16160.	1.6	26
357	Palladium-based nanoelectrocatalysts for renewable energy generation and conversion. Materials Today Nano, 2018, 1, 29-40.	2.3	26
358	Palladium Single Atoms on TiO ₂ as a Photocatalytic Sensing Platform for Analyzing the Organophosphorus Pesticide Chlorpyrifos. Angewandte Chemie, 2020, 132, 238-242.	1.6	26
359	Boosting Oxygen Reduction Catalysis by Tuning the Dimensionality of Pt-based Nanostructures. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2018, 34, 361-376.	2.2	25
360	High-efficiency cathode potassium compensation and interfacial stability improvement enabled by dipotassium squarate for potassium-ion batteries. Energy and Environmental Science, 2022, 15, 3015-3023.	15.6	25

#	Article	IF	CITATIONS
361	Modification of TiO2 Nanoparticles with Organodiboron Molecules Inducing Stable Surface Ti3+ Complex. IScience, 2019, 20, 195-204.	1.9	24
362	Ultrathin RuRh@(RuRh)O ₂ core@shell nanosheets as stable oxygen evolution electrocatalysts. Journal of Materials Chemistry A, 2020, 8, 15746-15751.	5.2	24
363	Rational Tuning of the Electrocatalytic Nanobiointerface for a "Turnâ€Off―Biofuel ellâ€Based Selfâ€Powered Biosensor for p53 Protein. Chemistry - A European Journal, 2015, 21, 13045-13051.	1.7	23
364	Nanoelectrocatalyst Based on Highâ€Density Au/Pt Hybrid Nanoparticles Supported on a Silica Nanosphere. Chemistry - an Asian Journal, 2008, 3, 1156-1162.	1.7	22
365	High-index faceted noble metal nanostructures drive renewable energy electrocatalysis. Nano Materials Science, 2020, 2, 309-315.	3.9	22
366	Photoelectrochemical batteries for efficient energy recovery. Chemical Communications, 2014, 50, 13331-13333.	2.2	21
367	Ni@RuM (M=Ni or Co) core@shell nanocrystals with high mass activity for overall water-splitting catalysis. Science China Materials, 2019, 62, 1868-1876.	3.5	21
368	A novel hybrid nanostructure based on SiO2@carbon nanotube coaxial nanocable. New Journal of Chemistry, 2007, 31, 575.	1.4	20
369	Ultrathin platinum-group metal coated hierarchical flowerlike gold microstructure: Electrochemical design and characterization. Electrochimica Acta, 2008, 53, 2776-2781.	2.6	19
370	Synthesis of CdTe Nanocrystals Using Te Nanorods as the Te Source and the Formation of Microtubes with Red Fluorescence. Inorganic Chemistry, 2007, 46, 6920-6923.	1.9	18
371	Serrated Au/Pd Core/Shell Nanowires with Jagged Edges for Boosting Liquid Fuel Electrooxidation. ChemSusChem, 2017, 10, 2375-2379.	3.6	18
372	Exclusive Strain Effect Boosts Overall Water Splitting in PdCu/Ir Core/Shell Nanocrystals. Angewandte Chemie, 2021, 133, 8324-8331.	1.6	18
373	Large-scale, rapid synthesis and application in surface-enhanced Raman spectroscopy of sub-micrometer polyhedral gold nanocrystals. Nanotechnology, 2007, 18, 405602.	1.3	17
374	Atomistic understanding of the origin of high oxygen reduction electrocatalytic activity of cuboctahedral Pt ₃ Co–Pt core–shell nanoparticles. Catalysis Science and Technology, 2016, 6, 1393-1401.	2.1	17
375	Linking melem with conjugated Schiff-base bonds to boost photocatalytic efficiency of carbon nitride for overall water splitting. Nanoscale, 2021, 13, 9315-9321.	2.8	17
376	An in-situ NH4+-etched strategy for anchoring atomic Mo site on ZnIn2S4 hierarchical nanotubes for superior hydrogen photocatalysis. Science China Chemistry, 2021, 64, 1716-1722.	4.2	17
377	Visualization of battery materials and their interfaces/interphases using cryogenic electron microscopy. Materials Today, 2022, 58, 238-274.	8.3	17
378	Oneâ€Dimensional Carbon Nanotube/SnO ₂ /Noble Metal Nanoparticle Hybrid Nanostructure: Synthesis, Characterization, and Electrochemical Sensing. Chemistry - an Asian Journal, 2010, 5, 1838-1845.	1.7	16

#	Article	IF	CITATIONS
379	Beyond Conventional Patterns: New Electrochemical Lithography with High Precision for Patterned Film Materials and Wearable Sensors. Analytical Chemistry, 2017, 89, 2569-2574.	3.2	16
380	Ethanolâ€Precipitable, Silicaâ€Passivated Perovskite Nanocrystals Incorporated into Polystyrene Microspheres for Longâ€Term Storage and Reusage. Angewandte Chemie, 2019, 131, 2825-2829.	1.6	16
381	Interfacial Engineering in PtNiCo/NiCoS Nanowires for Enhanced Electrocatalysis and Electroanalysis. Chemistry - A European Journal, 2020, 26, 4032-4038.	1.7	16
382	Emerging Materials Methods for Renewable Energy. Small Methods, 2020, 4, 2000087.	4.6	15
383	Ultrathin Metallic NbS ₂ Nanosheets with Unusual Intercalation Mechanism for Ultraâ€ S table Potassiumâ€ion Storage. Advanced Functional Materials, 2022, 32, .	7.8	15
384	Monodisperse Raspberry-Like Gold Submicrometer Spheres: Large-Scale Synthesis and Interface Assembling for Colloid Sphere Array. Crystal Growth and Design, 2008, 8, 3581-3585.	1.4	14
385	BiOCl/ultrathin polyaniline core/shell nanosheets with a sensitization mechanism for efficient visible-light-driven photocatalysis. Science China Materials, 2019, 62, 95-102.	3.5	14
386	Direct Observation of Heterogeneous Surface Reactivity and Reconstruction on Terminations of Grain Boundaries of Platinum. , 2021, 3, 622-629.		14
387	Nanoelectrode ensembles based on semi-interpenetrating network of carbon nanotubes. Electrochimica Acta, 2007, 52, 6186-6191.	2.6	13
388	Wet-chemical approach to three-dimensional gold nanocorallines: Synthesis and application in surface-enhanced Raman spectroscopy. Journal of Colloid and Interface Science, 2007, 315, 795-799.	5.0	13
389	Nanocellulose and Its Derivatives toward Advanced Lithium Sulfur Batteries. , 2021, 3, 1130-1142.		13
390	Highâ€Ðensity Gold Nanoparticles Supported on a [Ru(bpy) ₃] ²⁺ â€Ðoped Silica/Fe ₃ O ₄ Nanocomposite: Facile Preparation, Magnetically Induced Immobilization, and Applications in ECL Detection. Chemistry - an Asian Journal, 2008, 3, 1544-1548.	1.7	12
391	Selective, peroxidase substrate based "signal-on―colorimetric assay for the detection of chromium (VI). Analytica Chimica Acta, 2008, 630, 181-185.	2.6	11
392	Simple Electrochemical Route to Nanofiber Junctions and Dendrites of Conducting Polymer. Langmuir, 2008, 24, 2128-2132.	1.6	11
393	Core-Shell Architecture Advances Oxygen Electrocatalysis. CheM, 2019, 5, 260-262.	5.8	11
394	Supramolecular Anchoring Strategy for Facile Production of Ruthenium Nanoparticles Embedded in N-Doped Mesoporous Carbon Nanospheres for Efficient Hydrogen Generation. ACS Applied Materials & Interfaces, 2021, 13, 32997-33005.	4.0	11
395	In situ construction of amorphous hierarchical iron oxyhydroxide nanotubes via selective dissolution-regrowth strategy for enhanced lithium storage. Science China Materials, 2020, 63, 1993-2001.	3.5	11
396	Engineering e _g Orbital Occupancy of Pt with Au Alloying Enables Reversible Liâ''O ₂ Batteries. Angewandte Chemie, 2022, 134, .	1.6	11

#	Article	IF	CITATIONS
397	Asymmetrical etching of Ag nanoparticles into symmetry-reduced bi-metallic nanocups at the single-nanoparticle level. Chemical Communications, 2018, 54, 7227-7230.	2.2	10
398	Multimetallic Electrocatalyst Stabilized by Atomic Ordering. Joule, 2019, 3, 9-10.	11.7	10
399	Cu ₁₂ Sb ₄ S ₁₃ Quantum Dots/Fewâ€Layered Ti ₃ C ₂ Nanosheets with Enhanced K ⁺ Diffusion Dynamics for Efficient Potassium Ion Storage. Advanced Functional Materials, 2022, 32, 2108574.	7.8	10
400	Porous Carbon Spheres: Rational Design of Si/SiO2@Hierarchical Porous Carbon Spheres as Efficient Polysulfide Reservoirs for High-Performance Li-S Battery (Adv. Mater. 16/2016). Advanced Materials, 2016, 28, 3166-3166.	11.1	9
401	One-Pot Seedless Aqueous Design of Metal Nanostructures for Energy Electrocatalytic Applications. Electrochemical Energy Reviews, 2018, 1, 531-547.	13.1	9
402	Precious metal nanocrystals for renewable energy electrocatalysis: structural design and controlled synthesis. Dalton Transactions, 2020, 49, 267-273.	1.6	9
403	Segmented Au/PtCo heterojunction nanowires for efficient formic acid oxidation catalysis. Fundamental Research, 2021, 1, 453-460.	1.6	8
404	Role of binary metal chalcogenides in extending the limits of energy storage systems: Challenges and possible solutions. Science China Materials, 2022, 65, 559-592.	3.5	8
405	Ultrathin PtRu Nanowires as Efficient and Stable Electrocatalyst for Liquid Fuel Oxidation Reactions. Energy Material Advances, 2022, 2022, .	4.7	7
406	One pot, facile synthesis of hierarchical silver nanostrip assembling architecture. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 317, 673-678.	2.3	6
407	Monodisperse, submicrometer-scale platinum colloidal spheres with high electrocatalytic activity. Electrochemistry Communications, 2009, 11, 258-261.	2.3	6
408	Nanoreactor of Fe ₃ O ₄ @SiO ₂ Core–Shell Structure with Nanochannels for Efficient Catalysis. Journal of Biomedical Nanotechnology, 2009, 5, 586-590.	0.5	6
409	SERS imaging for label-free detection of the phospholipids distribution in hybrid lipid membrane. Science China Chemistry, 2011, 54, 1334-1341.	4.2	6
410	Batteries: 2D Monolayer MoS ₂ –Carbon Interoverlapped Superstructure: Engineering Ideal Atomic Interface for Lithium Ion Storage (Adv. Mater. 24/2015). Advanced Materials, 2015, 27, 3582-3582.	11.1	6
411	Emerging Materials for Energy Catalysis. Advanced Energy Materials, 2020, 10, 2000484.	10.2	6
412	Lewisâ€Acidic PtIr Multipods Enable Highâ€Performance Li–O ₂ Batteries. Angewandte Chemie, 2021, 133, 26796-26802.	1.6	6
413	Janusâ€like B _x C/C Quantum Sheets with Zâ€Scheme Mechanism Strengthen Tumor Photothermalâ€Immunotherapy in NIRâ€II Biowindow. Small Methods, 2022, 6, e2101551.	4.6	6
414	Zn ⁺ –O [–] Dual-Spin Surface State Formation by Modification of ZnO Nanoparticles with Diboron Compounds. Langmuir, 2019, 35, 14173-14179.	1.6	5

#	Article	IF	CITATIONS
415	Defective 1T′-ReSe2 nanosheets vertically grown on elastic MXene for fast and stable potassium ion storage. Science China Materials, 2022, 65, 3418-3427.	3.5	5
416	Editorial for special issue on metal-based materials for energy catalysis. Rare Metals, 2020, 39, 748-750.	3.6	4
417	Hierarchical Nanohybrids: 2D Thin Nanoflakes Assembled on Mesoporous Carbon Nanorods for Enhancing Electrocatalysis and for Improving Asymmetric Supercapacitors (Adv. Funct. Mater.) Tj ETQq1 1 0.784	3 1⁄48 rgBT	/Oserlock 10
418	Achieving Highâ€Performance 3D K ⁺ â€Preâ€intercalated Ti ₃ C ₂ T _{<i>x</i>} MXene for Potassiumâ€Ion Hybrid Capacitors via Regulating Electrolyte Solvation Structure. Angewandte Chemie, 2021, 133, 26450-26457.	1.6	3
419	Li-Ion Batteries: Suppressing Fe-Li Antisite Defects in LiFePO4 /Carbon Hybrid Microtube to Enhance the Lithium Ion Storage (Adv. Energy Mater. 24/2016). Advanced Energy Materials, 2016, 6, .	10.2	2
420	Celebrating 5 Years of Open Access with <i>ACS Omega</i> . ACS Omega, 2020, 5, 16986-16986.	1.6	2
421	Electrocatalytic Nanomaterials: Atomicâ€6cale Core/Shell Structure Engineering Induces Precise Tensile Strain to Boost Hydrogen Evolution Catalysis (Adv. Mater. 26/2018). Advanced Materials, 2018, 30, 1870191.	11.1	1
422	Emerging Small Science on Nanomaterials for Energy Storage and Catalysis. Small Science, 2021, 1, 2100101.	5.8	1
423	Single-atom nanocatalysts for biosensing application. Current Analytical Chemistry, 2022, 18, .	0.6	1
424	Multi-Metallic Nanoparticles as More Efficient Catalysts for Fuel Cell Reactions. , 2013, , 333-346.		0
425	Lithium-Sulfur Batteries: 3D Vertically Aligned and Interconnected Porous Carbon Nanosheets as Sulfur Immobilizers for High Performance Lithium-Sulfur Batteries (Adv. Energy Mater. 12/2016). Advanced Energy Materials, 2016, 6, .	10.2	0
426	Aldehyde replacement advances efficient hydrogen production in electrolyser. , 2022, , 100001.		0
427	Li–N Interaction Induced Deep Eutectic Gel Polymer Electrolyte for High Performance Lithiumâ€Metal Batteries. Angewandte Chemie, 0, , .	1.6	0