Kushal Sengupta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5239436/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cobalt Corrole Catalyst for Efficient Hydrogen Evolution Reaction from H ₂ O under Ambient Conditions: Reactivity, Spectroscopy, and Density Functional Theory Calculations. Inorganic Chemistry, 2013, 52, 3381-3387.	4.0	167
2	Selective four electron reduction of O2 by an iron porphyrin electrocatalyst under fast and slow electron fluxes. Chemical Communications, 2012, 48, 7631.	4.1	101
3	Electrocatalytic O ₂ -Reduction by Synthetic Cytochrome <i>c</i> Oxidase Mimics: Identification of a "Bridging Peroxoâ€Intermediate Involved in Facile 4e [–] /4H ⁺ O ₂ -Reduction. Journal of the American Chemical Society, 2015, 137, 12897-12905.	13.7	100
4	Direct observation of intermediates formed during steady-state electrocatalytic O ₂ reduction by iron porphyrins. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8431-8436.	7.1	96
5	Factors Determining the Rate and Selectivity of 4e [–] /4H ⁺ Electrocatalytic Reduction of Dioxygen by Iron Porphyrin Complexes. Accounts of Chemical Research, 2017, 50, 1744-1753.	15.6	89
6	Second Sphere Control of Redox Catalysis: Selective Reduction of O ₂ to O ₂ [–] or H ₂ O by an Iron Porphyrin Catalyst. Inorganic Chemistry, 2013, 52, 1443-1453.	4.0	64
7	Resonance Raman and Electrocatalytic Behavior of Thiolate and Imidazole Bound Iron Porphyrin Complexes on Self Assembled Monolayers: Functional Modeling of Cytochrome P450. Inorganic Chemistry, 2013, 52, 2000-2014.	4.0	62
8	Concerted Proton–Electron Transfer in Electrocatalytic O ₂ Reduction by Iron Porphyrin Complexes: Axial Ligands Tuning H/D Isotope Effect. Inorganic Chemistry, 2015, 54, 2383-2392.	4.0	62
9	O2 Reduction Reaction by Biologically Relevant Anionic Ligand Bound Iron Porphyrin Complexes. Inorganic Chemistry, 2013, 52, 12963-12971.	4.0	60
10	Catalytic H ₂ O ₂ Disproportionation and Electrocatalytic O ₂ Reduction by a Functional Mimic of Heme Catalase: Direct Observation of Compound 0 and Compound I in Situ. ACS Catalysis, 2016, 6, 1382-1388.	11.2	52
11	Electrocatalytic O ₂ Reduction Reaction by Synthetic Analogues of Cytochrome P450 and Myoglobin: In-Situ Resonance Raman and Dynamic Electrochemistry Investigations. Inorganic Chemistry, 2013, 52, 9897-9907.	4.0	50
12	A hydrogen bond scaffold supported synthetic heme Felll–O2â^' adduct. Chemical Communications, 2012, 48, 10535.	4.1	46
13	<i>In Situ</i> Mechanistic Investigation of O ₂ Reduction by Iron Porphyrin Electrocatalysts Using Surface-Enhanced Resonance Raman Spectroscopy Coupled to Rotating Disk Electrode (SERRS-RDE) Setup. ACS Catalysis, 2016, 6, 6838-6852.	11.2	45
14	X-ray crystal structure of a Cu(II) complex with the antiparasitic drug tinidazole, interaction with calf thymus DNA and evidence for antibacterial activity. Journal of Coordination Chemistry, 2014, 67, 265-285.	2.2	34
15	Self-Assembled Monolayers of Aβ peptides on Au Electrodes: An Artificial Platform for Probing the Reactivity of Redox Active Metals and Cofactors Relevant to Alzheimer's Disease. Journal of the American Chemical Society, 2012, 134, 12180-12189.	13.7	33
16	Site-specific covalent attachment of heme proteins on self-assembled monolayers. Journal of Biological Inorganic Chemistry, 2012, 17, 1009-1023.	2.6	33
17	Ammonium Tetrathiomolybdate: A Versatile Catalyst for Hydrogen Evolution Reaction from Water under Ambient and Hostile Conditions. Inorganic Chemistry, 2013, 52, 14168-14177.	4.0	26
18	Self-assembly of stable oligomeric and fibrillar aggregates of AÎ ² peptides relevant to Alzheimer's disease: morphology dependent Cu/heme toxicity and inhibition of PROS generation. Dalton Transactions, 2014, 43, 13377.	3.3	23

KUSHAL SENGUPTA

#	Article	IF	CITATIONS
19	Effect of Axial Ligand, Spin State, and Hydrogen Bonding on the Inner-Sphere Reorganization Energies of Functional Models of Cytochrome P450. Inorganic Chemistry, 2014, 53, 10150-10158.	4.0	21
20	Second sphere control of spin state: Differential tuning of axial ligand bonds in ferric porphyrin complexes by hydrogen bonding. Journal of Inorganic Biochemistry, 2016, 155, 82-91.	3.5	20
21	Heme bound amylin self-assembled monolayers on an Au electrode: an efficient bio-electrode for O2 reduction to H2O. Chemical Communications, 2014, 50, 3806.	4.1	18
22	Ammonium tetrathiomolybdate as a novel electrode material for convenient tuning of the kinetics of electrochemical O ₂ reduction by using iron–porphyrin catalysts. Journal of Materials Chemistry A, 2016, 4, 6819-6823.	10.3	13
23	Metal-induced sensor mobilization turns on affinity to activate regulator for metal detoxification in live bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13248-13255.	7.1	13
24	Biphasic unbinding of a metalloregulator from DNA for transcription (de)repression in Live Bacteria. Nucleic Acids Research, 2020, 48, 2199-2208.	14.5	11
25	Photophysical and ligand binding studies of metalloporphyrins bearing hydrophilic distal superstructure. Journal of Porphyrins and Phthalocyanines, 2013, 17, 210-219.	0.8	5
26	Metal Binding to Aβ Peptides Inhibits Interaction with Cytochrome <i>c</i> : Insights from Abiological Constructs. ACS Omega, 2018, 3, 13994-14003.	3.5	5
27	Bio-inspired Electrodes. , 2016, , 89-177.		1
28	Oxygen reduction reaction in enzymatic biofuel cells. , 2022, , 427-466.		0
29	Oxygen reduction reaction by metalloporphyrins. , 2022, , 45-77.		Ο