
Birgit Finke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5239255/publications.pdf Version: 2024-02-01

RIDCIT FINIKE

#	Article	IF	CITATIONS
1	The effect of positively charged plasma polymerization on initial osteoblastic focal adhesion on titanium surfaces. Biomaterials, 2007, 28, 4521-4534.	11.4	208
2	Improved initial osteoblast functions on amino-functionalized titanium surfaces. New Biotechnology, 2007, 24, 447-454.	2.7	87
3	Plasma processes for cell-adhesive titanium surfaces based on nitrogen-containing coatings. Surface and Coatings Technology, 2011, 205, S520-S524.	4.8	56
4	Structure Retention and Water Stability of Microwave Plasma Polymerized Films From Allylamine and Acrylic Acid. Plasma Processes and Polymers, 2009, 6, S70.	3.0	51
5	Impact of plasma chemistry versus titanium surface topography on osteoblast orientation. Acta Biomaterialia, 2012, 8, 3840-3851.	8.3	35
6	Aging effects of plasma polymerized ethylenediamine (PPEDA) thin films on cell-adhesive implant coatings. Materials Science and Engineering C, 2013, 33, 3875-3880.	7.3	33
7	Abrogated Cell Contact Guidance on Amino-Functionalized Microgrooves. ACS Applied Materials & Interfaces, 2017, 9, 10461-10471.	8.0	33
8	Antimicrobial Potential of Copper ontaining Titanium Surfaces Generated by Ion Implantation and Dual High Power Impulse Magnetron Sputtering. Advanced Engineering Materials, 2012, 14, B224.	3.5	30
9	Poly (hexamethylene biguanide) adsorption on hydrogen peroxide treated Ti–Al–V alloys and effects on wettability, antimicrobial efficacy, and cytotoxicity. Biomaterials, 2014, 35, 5261-5277.	11.4	30
10	Positively Charged Material Surfaces Generated by Plasma Polymerized Allylamine Enhance Vinculin Mobility in Vital Human Osteoblastss. Advanced Engineering Materials, 2010, 12, B356.	3.5	29
11	Aging of Plasma-Polymerized Allylamine Nanofilms and the Maintenance of Their Cell Adhesion Capacity. Langmuir, 2014, 30, 13914-13924.	3.5	27
12	Surface Radical Detection on NH ₃ â€Plasma Treated Polymer Surfaces Using the Radical Scavenger NO. Plasma Processes and Polymers, 2008, 5, 386-396.	3.0	26
13	Evaluation of Osseointegration of Titanium Alloyed Implants Modified by Plasma Polymerization. International Journal of Molecular Sciences, 2014, 15, 2454-2464.	4.1	26
14	Enhanced calcium ion mobilization in osteoblasts on amino group containing plasma polymer nanolayer. Cell and Bioscience, 2018, 8, 22.	4.8	25
15	Accelerated cell-surface interlocking on plasma polymer-modified porous ceramics. Materials Science and Engineering C, 2016, 69, 1116-1124.	7.3	24
16	Mechanical characterization of anti-infectious, anti-allergic, and bioactive coatings on orthopedic implant surfaces. Journal of Materials Science, 2009, 44, 5544-5551.	3.7	21
17	Time-Dependent Metabolic Activity and Adhesion of Human Osteoblast-Like Cells on Sensor Chips with a Plasma Polymer Nanolayer. International Journal of Artificial Organs, 2010, 33, 738-748.	1.4	19
18	Gas-Discharge Plasma-Assisted Functionalization of Titanium Implant Surfaces. Materials Science Forum, 2010, 638-642, 700-705.	0.3	19

Birgit Finke

#	Article	IF	CITATIONS
19	The <i>in vivo</i> inflammatory and foreign body giant cell response against different poly(<scp>l</scp> ″actideâ€coâ€ <scp>d/l</scp> ″actide) implants is primarily determined by material morphology rather than surface chemistry. Journal of Biomedical Materials Research - Part A, 2018, 106, 2726-2734.	4.0	17
20	Tuning of the electrochemical properties of transparent fluorine-doped tin oxide electrodes by microwave pulsed-plasma polymerized allylamine. Electrochimica Acta, 2019, 313, 432-440.	5.2	17
21	Analysis of the Release Characteristics of Cu-Treated Antimicrobial Implant Surfaces Using Atomic Absorption Spectrometry. Bioinorganic Chemistry and Applications, 2012, 2012, 1-5.	4.1	15
22	Surface-Coated Polylactide Fiber Meshes as Tissue Engineering Matrices with Enhanced Cell Integration Properties. International Journal of Polymer Science, 2014, 2014, 1-12.	2.7	15
23	Design of Plasma Surfaceâ€Activated, Electrospun Polylactide Nonâ€Wovens with Improved Cell Acceptance. Advanced Engineering Materials, 2011, 13, B165.	3.5	13
24	A Cell-Adhesive Plasma Polymerized Allylamine Coating Reduces the In Vivo Inflammatory Response Induced by Ti6Al4V Modified with Plasma Immersion Ion Implantation of Copper. Journal of Functional Biomaterials, 2017, 8, 30.	4.4	13
25	Serum profile of pro- and anti-inflammatory cytokines in rats following implantation of low-temperature plasma-modified titanium plates. Journal of Materials Science: Materials in Medicine, 2012, 23, 1299-1307.	3.6	12
26	Plasma Polymerized Allylamine—The Unique Cell-Attractive Nanolayer for Dental Implant Materials. Polymers, 2019, 11, 1004.	4.5	11
27	In vivo examination of the local inflammatory response after implantation of Ti6Al4V samples with a combined low-temperature plasma treatment using pulsed magnetron sputtering of copper and plasma-polymerized ethylenediamine. Journal of Materials Science: Materials in Medicine, 2013, 24, 761-771.	3.6	10
28	Examination of the inflammatory response following implantation of titanium plates coated with phospholipids in rats. Journal of Materials Science: Materials in Medicine, 2011, 22, 1015-1026.	3.6	9
29	Osteoblast Behavior <i>In Vitro</i> in Porous Calcium Phosphate Composite Scaffolds, Surface Activated with a Cell Adhesive Plasma Polymer Layer. Materials Science Forum, 0, 706-709, 566-571.	0.3	9
30	Quantification of Osseointegration of Plasma-Polymer Coated Titanium Alloyed Implants by means of Microcomputed Tomography versus Histomorphometry. BioMed Research International, 2015, 2015, 1-8.	1.9	8
31	Systemic IFNÎ ³ predicts local implant macrophage response. Journal of Materials Science: Materials in Medicine, 2015, 26, 131.	3.6	8
32	Osteoblast Sensitivity to Topographical and Chemical Features of Titanium. Materials Science Forum, 2010, 638-642, 652-657.	0.3	7
33	Plasma-deposited fluorocarbon polymer films on titanium for preventing cell adhesion: a surface finishing for temporarily used orthopaedic implants. Journal Physics D: Applied Physics, 2016, 49, 234002.	2.8	6
34	Poly (hexamethylene biguanide), adsorbed onto Tiâ€Alâ€V alloys, kills slimeâ€producing Staphylococci and Pseudomonas aeruginosa without inhibiting SaOsâ€2 cell differentiation. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 1801-1813.	3.4	6
35	Time-dependent metabolic activity and adhesion of human osteoblast-like cells on sensor chips with a plasma polymer nanolayer. International Journal of Artificial Organs, 2010, 33, 738-48.	1.4	6
36	Geometrical Micropillars Combined with Chemical Surface Modifications – Independency of Actin Filament Spatial Distribution in Primary Osteoblasts. Materials Science Forum, 0, 783-786, 1320-1325.	0.3	5

BIRGIT FINKE

#	Article	IF	CITATIONS
37	Electrochemical Assessment of Cu-PIII Treated Titanium Samples for Antimicrobial Surfaces. Materials Science Forum, 0, 706-709, 478-483.	0.3	3
38	Anti-Adhesive Finishing of Temporary Implant Surfaces by a Plasma-Fluorocarbon-Polymer. Materials Science Forum, 0, 783-786, 1238-1243.	0.3	3
39	Restricted cell functions on micropillars are alleviated by surface-nanocoating with amino groups. Journal of Cell Science, 2017, 131, .	2.0	3
40	On the Application of Gas Discharge Plasmas for the Immobilization of Bioactive Molecules for Biomedical and Bioengineering Applications. , 2011, , .		2
41	Local Inflammatory Response after Intramuscularly Implantation of Anti-Adhesive Plasma-Fluorocarbon-Polymer Coated Ti6AI4V Discs in Rats. Polymers, 2021, 13, 2684.	4.5	2
42	Complex Cell Physiology on Topographically and Chemically Designed Material Surfaces. Materials Science Forum, 2016, 879, 78-83.	0.3	1
43	Plasma-Activated Electrospun Polylactide Fiber Meshes as Matrices for Tissue Engineering. Materials Science Forum, 0, 783-786, 1337-1342.	0.3	0