
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5238858/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organogel Formation of Soybean Oil with Waxes. JAOCS, Journal of the American Oil Chemists' Society, 2012, 89, 639-647.	0.8	176
2	Modification of epoxidized soybean oil for lubricant formulations with improved oxidative stability and low pour point. JAOCS, Journal of the American Oil Chemists' Society, 2001, 78, 1179-1184.	0.8	163
3	Evaluation of canola oil oleogels with candelilla wax as an alternative to shortening in baked goods. Food Chemistry, 2015, 187, 525-529.	4.2	163
4	Margarine from Organogels of Plant Wax and Soybean Oil. JAOCS, Journal of the American Oil Chemists' Society, 2013, 90, 1705-1712.	0.8	118
5	Preparation of Margarines from Organogels of Sunflower Wax and Vegetable Oils. Journal of Food Science, 2014, 79, C1926-32.	1.5	90
6	Utilization of Oleogels as a Replacement for Solid Fat in Aerated Baked Goods: Physicochemical, Rheological, and Tomographic Characterization. Journal of Food Science, 2017, 82, 445-452.	1.5	89
7	Oil-structuring characterization of natural waxes in canola oil oleogels: rheological, thermal, and oxidative properties. Applied Biological Chemistry, 2017, 60, 17-22.	0.7	83
8	Properties of Cookies Made with Natural Wax–Vegetable Oil Organogels. Journal of Food Science, 2016, 81, C1045-54.	1.5	81
9	Preparation and properties of lubricant basestocks from epoxidized soybean oil and 2-ethylhexanol. JAOCS, Journal of the American Oil Chemists' Society, 2003, 80, 811-815.	0.8	76
10	Morphology and networks of sunflower wax crystals in soybean oil organogel. Food Structure, 2015, 5, 10-20.	2.3	66
11	The "Picrate Effect―on Extraction Selectivities of Aromatic Group-Containing Crown Ethers for Alkali Metal Cations1. Journal of the American Chemical Society, 1999, 121, 11281-11290.	6.6	65
12	A critical review on structures, health effects, oxidative stability, and sensory properties of oleogels. Biocatalysis and Agricultural Biotechnology, 2020, 26, 101657.	1.5	65
13	Synthetic lubricant basestocks from epoxidized soybean oil and Guerbet alcohols. Industrial Crops and Products, 2006, 23, 311-317.	2.5	62
14	Physical Properties of Beeswax, Sunflower Wax, and Candelilla Wax Mixtures and Oleogels. JAOCS, Journal of the American Oil Chemists' Society, 2019, 96, 1125-1142.	0.8	62
15	Calix[4]arenes with a novel proton-ionizable group: synthesis and metal ion separations. Chemical Communications, 1998, , 419-420.	2.2	56
16	Oxidation of Fish Oil Oleogels Formed by Natural Waxes in Comparison With Bulk Oil. European Journal of Lipid Science and Technology, 2018, 120, 1700378.	1.0	56
17	Properties of margarines prepared from soybean oil oleogels with mixtures of candelilla wax and beeswax. Journal of Food Science, 2020, 85, 3293-3302.	1.5	44
18	Selective transport of amino acid esters through a chloroform liquid membrane by a calix[6]arene-based ester carrier. Journal of the Chemical Society Chemical Communications, 1991, , 217	2.0	42

#	Article	IF	CITATIONS
19	Antioxidant activity of amino acids in soybean oil at frying temperature: Structural effects and synergism with tocopherols. Food Chemistry, 2017, 221, 1168-1177.	4.2	42
20	Antioxidant Activity of Sesamol in Soybean Oil Under Frying Conditions. JAOCS, Journal of the American Oil Chemists' Society, 2013, 90, 659-666.	0.8	41
21	Structural Effect of Lignans and Sesamol on Polymerization of Soybean Oil at Frying Temperature. JAOCS, Journal of the American Oil Chemists' Society, 2012, 89, 1067-1076.	0.8	35
22	Evaluation of Beeswax, Candelilla Wax, Rice Bran Wax, and Sunflower Wax as Alternative Stabilizers for Peanut Butter. JAOCS, Journal of the American Oil Chemists' Society, 2019, 96, 1235-1248.	0.8	33
23	The thermal, rheological, and structural characterization of grapeseed oil oleogels structured with binary blends of oleogelator. Journal of Food Science, 2020, 85, 3432-3441.	1.5	32
24	Synthesis of steryl ferulates with various sterol structures and comparison of their antioxidant activity. Food Chemistry, 2015, 169, 92-101.	4.2	30
25	Extraction Selectivities of Crown Ethers for Alkali Metal Cations:Â Differences between Single-Species and Competitive Solvent Extractions. Analytical Chemistry, 1999, 71, 672-677.	3.2	23
26	Properties of Oleogels Formed With Highâ€6tearic Soybean Oils and Sunflower Wax. JAOCS, Journal of the American Oil Chemists' Society, 2018, 95, 557-569.	0.8	23
27	Investigation of polymers and alcohols produced in oxidized soybean oil at frying temperatures. Food Chemistry, 2020, 317, 126379.	4.2	23
28	Protection of fish oil from oxidation with sesamol. European Journal of Lipid Science and Technology, 2016, 118, 885-897.	1.0	20
29	Wax Oleogels. , 2018, , 133-171.		20
30	Volatile by-products during heat polymerization of soybean oil. JAOCS, Journal of the American Oil Chemists' Society, 2003, 80, 177-180.	0.8	19
31	Rigid versus flexible: how important is ligand "preorganization―for metal ion recognition by lower rim-functionalized calix[4]arenes?. Organic and Biomolecular Chemistry, 2004, 2, 2585-2592.	1.5	19
32	Utilization of oleogels with binary oleogelator blends for filling creams low in saturated fat. LWT - Food Science and Technology, 2022, 155, 112972.	2.5	19
33	Reliability of ¹ H NMR Analysis for Assessment of Lipid Oxidation at Frying Temperatures. JAOCS, Journal of the American Oil Chemists' Society, 2017, 94, 257-270.	0.8	18
34	New Proton-Ionizable Lariat Ethers with Picrylamino-Type Side Arms and Their Alkali Metal Salts. Synthesis and Structural Studies1. Journal of Organic Chemistry, 1999, 64, 5341-5349.	1.7	17
35	Effect of upper rim para-alkyl substituents on extraction of alkali and alkaline earth metal cations by di-ionizable calix[4]arenes. Perkin Transactions II RSC, 2002, , 2072-2077.	1.1	17
36	Enhancing Antioxidant Activity of Sesamol at Frying Temperature by Addition of Additives through Reducing Volatility [*] . Journal of Food Science, 2014, 79, C2164-73.	1.5	17

HONG-SIK HWANG

#	Article	lF	CITATIONS
37	Factors Affecting Antioxidant Activity of Amino Acids in Soybean Oil at Frying Temperatures. European Journal of Lipid Science and Technology, 2019, 121, 1900091.	1.0	16
38	Study on Antioxidant Activity of Amino Acids at Frying Temperatures and Their Interaction with Rosemary Extract, Green Tea Extract, and Ascorbic Acid. Journal of Food Science, 2019, 84, 3614-3623.	1.5	15
39	New mono-ionizable, Li+-selective calix[4]arenes. Perkin Transactions II RSC, 2002, , 1869-1874.	1.1	14
40	No Evidence Found for Diels–Alder Reaction Products in Soybean Oil Oxidized at the Frying Temperature by NMR Study. JAOCS, Journal of the American Oil Chemists' Society, 2013, 90, 825-834.	0.8	13
41	Solvent fractionation of rice bran oil to produce a spreadable rice bran product. European Journal of Lipid Science and Technology, 2013, 115, 847-857.	1.0	13
42	NMR spectroscopy for assessing lipid oxidation. Lipid Technology, 2015, 27, 187-189.	0.3	13
43	Feasibility of hemp seed oil oleogels structured with natural wax as solid fat replacement in margarine. JAOCS, Journal of the American Oil Chemists' Society, 2022, 99, 1055-1070.	0.8	13
44	Molecular design of lipophilic disalicylic acid compounds with varying spacers for selective lead(II) extraction. Talanta, 2000, 52, 385-396.	2.9	12
45	Changes in markers of lipid oxidation and thermal treatment in feedâ€grade fats and oils. Journal of the Science of Food and Agriculture, 2020, 100, 3328-3340.	1.7	12
46	Sorption of lead(II) by proton-ionizable polyether resins. Reactive and Functional Polymers, 1998, 36, 125-134.	2.0	11
47	Food Additives Reducing Volatility of Antioxidants at Frying Temperature. JAOCS, Journal of the American Oil Chemists' Society, 2014, 91, 1745-1761.	0.8	11
48	Unusual conformational control of mobile mono- and diionizable calix[4]arene ligands by alkali metal cationsâ€ã€šâ€¡. Perkin Transactions II RSC, 2001, , 1103-1108.	1.1	10
49	Comparison of dibenzo-16-crown-5 compounds with pendent amide groups as sodium ionophores in ion-selective electrodes and in solvent extraction. Electroanalysis, 1996, 8, 615-618.	1.5	9
50	Chromogenic Lariat Ethers for Selective Alkali Metal Cation Recognition. Analytical Chemistry, 2001, 73, 5260-5265.	3.2	9
51	Effect of Tocopherols on the Antiâ€Polymerization Activity of Oryzanol and Corn Steryl Ferulates in Soybean Oil. JAOCS, Journal of the American Oil Chemists' Society, 2013, 90, 1351-1358.	0.8	9
52	Oxidative Stability and Shelf Life of Frying Oils and Fried Foods. , 2016, , 251-285.		9
53	Solubilization of cashew gum from Anacardium occidentale in aqueous medium. Carbohydrate Polymers, 2018, 199, 205-209.	5.1	9
54	A Compliant and Creep Resistant SAC-Al(Ni) Alloy. , 2007, , .		8

54 A Compliant and Creep Resistant SAC-Al(Ni) Alloy. , 2007, , .

#	Article	IF	CITATIONS
55	Properties of rice bran oilâ€derived functional ingredients. Lipid Technology, 2014, 26, 179-182.	0.3	8
56	Reduction of omega-3 oil oxidation in stable emulsion of caseinate-omega-3 oil-oat beta-glucan. LWT - Food Science and Technology, 2015, 62, 1083-1090.	2.5	8
57	Advances in NMR Spectroscopy for Lipid Oxidation Assessment. SpringerBriefs in Food, Health and Nutrition, 2017, , .	0.5	7
58	Antioxidant Activity of Spent Coffee Ground Extracts Toward Soybean Oil and Fish Oil. European Journal of Lipid Science and Technology, 2019, 121, 1800372.	1.0	7
59	Antioxidant Activity of Osage Orange Extract in Soybean Oil and Fish Oil during Storage. JAOCS, Journal of the American Oil Chemists' Society, 2021, 98, 73-87.	0.8	7
60	A DSC study of Z2 â^'Z3 viscosity blown soybean oil. JAOCS, Journal of the American Oil Chemists' Society, 2002, 79, 1151-1155.	0.8	5
61	A Compliant and Creep Resistant SAC-Al(Ni) Alloy. , 2007, , .		5
62	Highly selective asymmetric synthesis of 2-hydroxy fatty acid methyl esters through chiral oxazolidinone carboximides. JAOCS, Journal of the American Oil Chemists' Society, 2001, 78, 205-211.	0.8	4
63	Thermal modification of vegetable oils. Lipid Technology, 2013, 25, 83-85.	0.3	4
64	Stability and Antioxidant Activity of Annatto (<i>Bixa orellana</i> L.) Tocotrienols During Frying and in Fried Tortilla Chips. Journal of Food Science, 2018, 83, 266-274.	1.5	4
65	Texture and flavor evaluation of peanut butter stabilized with natural waxes. Journal of Food Science, 2022, 87, 1851-1864.	1.5	4
66	Synthesis of macrocyclic polyethers with partially fluorinated side arms. Journal of Heterocyclic Chemistry, 2003, 40, 451-458.	1.4	3
67	Synthesis of dibenzoâ€16â€crownâ€5 compounds with pendant ester and ether groups. Journal of Heterocyclic Chemistry, 2004, 41, 659-675.	1.4	3
68	Organogel Polymers from 10-Undecenoic Acid and Poly(vinyl acetate). Journal of Polymers and the Environment, 2018, 26, 3670-3676.	2.4	3
69	Antioxidant activity of amino acid sodium and potassium salts in vegetable oils at frying temperatures. JAOCS, Journal of the American Oil Chemists' Society, 2022, 99, 407-419.	0.8	3
70	Calix[4]arenes with a Novel Proton-Ionizable Group: Synthesis and Metal Ion Separations. ACS Symposium Series, 2000, , 112-124.	0.5	2
71	Synthesis of lariat ethers with pendent amine, amide, <i>O</i> â€benzylhydroxamate, and urethane groups. Journal of Heterocyclic Chemistry, 2003, 40, 443-450.	1.4	2
72	1H NMR Spectroscopy for Assessment of Lipid Oxidation. SpringerBriefs in Food, Health and Nutrition, 2017, , 15-31.	0.5	2

#	Article	IF	CITATIONS
73	Separations of Soft Heavy-Metal Cations by Lower Rim-Functionalized Calix[4]arenes. ACS Symposium Series, 2000, , 125-134.	0.5	1
74	Use of 13C NMR Spectroscopy for Determination of Lipid Oxidation. SpringerBriefs in Food, Health and Nutrition, 2017, , 43-46.	0.5	1
75	Conventional Analytical Methods to Assess Lipid Oxidation. SpringerBriefs in Food, Health and Nutrition, 2017, , 1-9.	0.5	1
76	Synthesis of Lariat Ethers with Pendent Amine, Amide, O-Benzylhydroxamate, and Urethane Groups ChemInform, 2003, 34, no.	0.1	0
77	Synthesis of Macrocyclic Polyethers with Partially Fluorinated Side Arms ChemInform, 2003, 34, no.	0.1	0
78	Epoxy flux - an answer for reliable no-clean flip chip assembly. , 0, , .		0
79	1H NMR Spectroscopy for Identification of Oxidation Products and for Elucidation of Reaction Mechanisms. SpringerBriefs in Food, Health and Nutrition, 2017, , 33-41.	0.5	0
80	Application of NMR Spectroscopy for Foods and Lipids. SpringerBriefs in Food, Health and Nutrition, 2017, , 11-13.	0.5	0
81	31P NMR Spectroscopy for Assessment of Lipid Oxidation. SpringerBriefs in Food, Health and Nutrition, 2017, , 47-48.	0.5	0