Jose Jimenez-Mier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5238740/publications.pdf

Version: 2024-02-01

516561 477173 62 947 16 29 g-index citations h-index papers 63 63 63 1123 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Saturation and optical pumping effects in the fluorescence that follows the excitation of the D2 transition in atomic rubidium. Optics Communications, 2022, 508, 127727.	1.0	1
2	Electric-dipole forbidden transitions for probing atomic state preparation: the case of the Autler–Townes effect. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54, 095002.	0.6	4
3	Optical spectroscopy of the 5p 3/2 ât' 6p 1/2 electric dipole-forbidden transition in atomic rubidium. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 135001.	0.6	4
4	One step beyond the electric dipole approximation: An experiment to observe the 5p â†' 6p forbidden transition in atomic rubidium. American Journal of Physics, 2018, 86, 7-13.	0.3	3
5	Laser spectroscopy of the 5P3/2 \hat{a}^{\dagger} 6Pj (j = 1/2 and 3/2) electric dipole forbidden transitions in atomic rubidium. AIP Conference Proceedings, 2018, , .	0.3	1
6	Optical, Electronic, and Magnetic Engineering of ⟠111⟠© Layered Halide Perovskites. Chemistry of Materials, 2018, 30, 5315-5321.	3.2	69
7	Control of electronic magnetic state population via light polarization in the $5 < i > p < i > c > 3/2 < sub > 3/2 < s$	0.6	6
8	The influence of charge transfers effects in monazite-type LaVO4 and perovskite-type LaVO3 prepared by sol-gel acrylamide polymerization. Journal of Electron Spectroscopy and Related Phenomena, 2016, 211, 82-86.	0.8	4
9	A laser spectroscopy system with combined absorption, polarization rotation and fluorescence detection to study two photon transitions in atomic rubidium. Journal of Applied Research and Technology, 2015, 13, 543-550.	0.6	2
10	Observation of the $5p3/2\hat{a}^{2}$ for $93/2\hat{a}$ electric-dipole-forbidden transition in atomic rubidium using optical-optical double-resonance spectroscopy. Physical Review A, 2015, 92, .	1.0	14
11	X-ray absorption and resonant inelastic x-ray scattering (RIXS) show the presence of Cr+ at the surface and in the bulk of CrF2. AIP Conference Proceedings, 2015 , , .	0.3	1
12	Polarization effects in the interaction between multi-level atoms and two optical fields. Physica Scripta, 2015, 90, 068017.	1.2	6
13	Probe-intensity dependence of velocity-selective polarization spectra at the rubidium D2 manifold and comparison with a rate-equation calculation. Physical Review A, 2014, 89, .	1.0	7
14	Layered-structural monoclinic–orthorhombic perovskite La2Ti2O7 to orthorhombic LaTiO3 phase transition and their microstructure characterization. Materials Characterization, 2014, 89, 13-22.	1.9	40
15	Strongly correlated transition metal compounds investigated by soft X-ray spectroscopies and multiplet calculations. Journal of Electron Spectroscopy and Related Phenomena, 2014, 196, 136-141.	0.8	2
16	Atomic multiplets at the mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> mml:msub> mml:mi>L mml:mrow> mml:mn>2 mml:mo>, of 3 <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> mml:mi>dd</mml:math> transition metals and the ligand K edge in x-ray absorption spectroscopy of ionic systems. Physical Review B, 2013, 87, .	mml:mn>	3 19
17	Excited states in yttrium orthovanadate YVO4 measured by soft X-ray absorption spectroscopy. Journal of Materials Science, 2013, 48, 6437-6444.	1.7	7
18	Fast electron dynamics in vanadates measured by resonant inelastic x-ray scattering. Materials Letters, 2013, 107, 144-146.	1.3	1

#	Article	IF	Citations
19	X-ray absorption to determine the metal oxidation state of transition metal compounds. AIP Conference Proceedings, $2013, \ldots$	0.3	2
20	Novel sol–gel methodology to produce LaCoO3 by acrylamide polymerization assisted by γ-irradiation. Radiation Physics and Chemistry, 2012, 81, 512-518.	1.4	13
21	Direct probe of Mott-Hubbard to charge-transfer insulator transition and electronic structure evolution in transition-metal systems. Physical Review B, 2011, 83, .	1.1	53
22	Synthesis of Lithium Cobaltite (LiCoO2) Prepared by Solid State and Sol-gel Acryl Amide Polymerization Reaction Microscopy and Microanalysis, 2009, 15, 1312-1313.	0.2	0
23	Polarized velocity selective spectroscopy of atomic rubidium using counterpropagating beams. Optics Communications, 2009, 282, 887-891.	1.0	11
24	Structural and morphology comparison between m-LaVO4 and LaVO3 compounds prepared by sol–gel acrylamide polymerization and solid state reaction. Journal of Alloys and Compounds, 2009, 479, 511-519.	2.8	26
25	Microstructural Comparison of La-V-O Compounds Prepared by Sol-Gel Acrylamide Polymerization and Solid State Reaction Microscopy and Microanalysis, 2009, 15, 1044-1045.	0.2	6
26	Synthesis and structural characterization of YVO3 prepared by sol–gel acrylamide polymerization and solid state reaction methods. Journal of Sol-Gel Science and Technology, 2008, 46, 1-10.	1,1	17
27	Beryllium doubly excited autoionizing resonances between the2pand3pthresholds. Physical Review A, 2007, 76, .	1.0	7
28	Electronic structure of transition metal fluorides and oxides determined by resonant X-ray absorption and X-ray emission spectroscopies. Radiation Effects and Defects in Solids, 2007, 162, 613-620.	0.4	3
29	X-ray Raman scattering at the edge of manganese compounds: Characteristic behaviour of and. Radiation Physics and Chemistry, 2006, 75, 1666-1669.	1.4	2
30	Valence satellite photoionization of atomic scandium in the region of the 3p → 3d giant resonance. Journal of Physics B: Atomic, Molecular and Optical Physics, 2005, 38, 3273-3287.	0.6	4
31	X-ray Raman scattering at the manganeseLedge ofMnF2: Valence emission ofMn2+. Physical Review A, 2005, 72, .	1.0	5
32	Chemical effects in the manganese3sâ†'2px-ray emission that follows resonant and nonresonant photon production of a2phole. Physical Review B, 2004, 70, .	1,1	10
33	Correlation effects in the resonant and nonresonant manganese3s→2pphoton emission inMnF2. Physical Review A, 2003, 68, .	1.0	5
34	Direct evidence for $3p\ \hat{A}\ 2p$ non-dipole x-ray emission in transition metals. Journal of Physics B: Atomic, Molecular and Optical Physics, 2003, 36, L173-L180.	0.6	6
35	Angular distributions of the atomic scandium3dand4sphotoelectrons in the region of the3p→3dgiant resonance. Physical Review A, 2002, 66, .	1.0	12
36	Decay channels for the Ti($2p1/2$) core hole excitations in TiO2 observed by x-ray Raman scattering. Physical Review B, 2002, 65, .	1,1	11

#	Article	IF	Citations
37	An approximation to the plasma dispersion function. Journal of Quantitative Spectroscopy and Radiative Transfer, 2001, 70, 273-284.	1.1	6
38	Core polarization effects in the decay of 1s â†'np (n= 2-6) resonantly excited beryllium. Journal of Physics B: Atomic, Molecular and Optical Physics, 2001, 34, L693-L700.	0.6	3
39	Auger decay of the 1s rightarrownp (n= 2-6) resonances in beryllium. Journal of Physics B: Atomic, Molecular and Optical Physics, 1999, 32, 4301-4307.	0.6	9
40	Calculation of the dipole-allowed excitations of the 3p44s4pand 3p43d4pconfigurations in argon. Physical Review A, 1999, 59, 1690-1693.	1.0	1
41	Dynamical behavior of x-ray absorption and scattering at theLedge of titanium compounds: Experiment and theory. Physical Review B, 1999, 59, 2649-2658.	1.1	56
42	High-resolution photoelectron spectrometry of autoionizing resonances between the 3P and 1D thresholds in atomic chlorine. Physical Review A, 1997, 56, 3659-3665.	1.0	9
43	High-resolution electron spectrometry of open-shell atoms. Journal of Electron Spectroscopy and Related Phenomena, 1996, 79, 241-246.	0.8	5
44	Evidence for the spin-orbit-inducedp4(D21)mdF22resonances in atomic Br and Cl. Physical Review A, 1996, 54, R2537-R2539.	1.0	10
45	Study of buried interfaces by soft xâ€ray fluorescence spectroscopy excited by synchrotron radiation. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1996, 14, 859-866.	0.9	10
46	Photoionization of atomic oxygen at the multiplet term level from 20 to 212 eV. Physical Review A, 1995, 52, 4656-4664.	1.0	17
47	Photoelectron spectra in cadmium: comparison with theory and (e,2e) spectra. Journal of Physics B: Atomic, Molecular and Optical Physics, 1994, 27, 3945-3951.	0.6	5
48	Photoexcited K Auger spectra of atomic and molecular oxygen. Journal of Electron Spectroscopy and Related Phenomena, 1994, 67, 243-259.	0.8	40
49	Contribution of the instrument window function to the profile of autoionizing resonances. Journal of Quantitative Spectroscopy and Radiative Transfer, 1994, 51, 741-749.	1.1	21
50	Evidence for atomic features in the decay of resonantly excited molecular oxygen. Chemical Physics Letters, 1993, 213, 315-320.	1.2	46
51	Energy dependence of the outer core-level multiplet structures in atomic Mn and Mn-containing compounds. Physical Review B, 1993, 48, 12425-12437.	1.1	64
52	High-resolution photoelectron spectrometric analysis of the decay of the 4pexcitations in atomic strontium. Physical Review A, 1993, 48, 442-451.	1.0	14
53	Alignment of photoionization-producedHe+(2p) between then=2 and 3 levels. Physical Review A, 1991, 44, 5615-5623.	1.0	8
54	Effect of correlation on 2p-row atomicglfactors. Physical Review A, 1991, 43, 4026-4029.	1.0	1

#	Article	IF	CITATIONS
55	Autoionizing resonances 4d→nlin cadmium. Physical Review A, 1989, 39, 95-102.	1.0	28
56	Partial and total cross sections and multiplet structure in the photoionization of atomic manganese. Physical Review A, 1989, 40, 3712-3720.	1.0	35
57	Magnetic moments of atomic nitrogen in the S4 and D2 levels of its ground-state configuration. Physical Review A, 1989, 39, 58-63.	1.0	7
58	Investigations on the photoionization of the core levels of nitrous oxide. Journal of Electron Spectroscopy and Related Phenomena, 1988, 47, 257-269.	0.8	16
59	Direct Evidence from Gas-Phase Atomic Spectra for an Unscreened Intra-Atomic Origin of Outer-Core Multiplet Splittings in Solid Manganese Compounds. Physical Review Letters, 1988, 61, 2592-2595.	2.9	96
60	Photoionization of gallium at 3d-4p and 4s-np (n=5,6) resonances. Physical Review A, 1988, 37, 2408-2414.	1.0	7
61	Angular Distribution of Fluorescence from Photoionization-ProducedHe+(n=2). Physical Review Letters, 1986, 57, 2260-2263.	2.9	40
62	Ultrahigh-resolution frequency measurements in the ^39K_2B^1Îu-X^1â´g^+ (6-0) band. Journal of the Optical Society of America B: Optical Physics, 1985, 2, 411.	0.9	9