Matthias Oelze

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5238630/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lysozyme M–Positive Monocytes Mediate Angiotensin II–Induced Arterial Hypertension and Vascular Dysfunction. Circulation, 2011, 124, 1370-1381.	1.6	422
2	European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biology, 2017, 13, 94-162.	3.9	242
3	The Sodium-Glucose Co-Transporter 2 Inhibitor Empagliflozin Improves Diabetes-Induced Vascular Dysfunction in the Streptozotocin Diabetes Rat Model by Interfering with Oxidative Stress and Glucotoxicity. PLoS ONE, 2014, 9, e112394.	1.1	222
4	The SGLT2 inhibitor empagliflozin improves the primary diabetic complications in ZDF rats. Redox Biology, 2017, 13, 370-385.	3.9	208
5	Molecular Mechanisms of the Crosstalk Between Mitochondria and NADPH Oxidase Through Reactive Oxygen Species—Studies in White Blood Cells and in Animal Models. Antioxidants and Redox Signaling, 2014, 20, 247-266.	2.5	203
6	Crosstalk of mitochondria with NADPH oxidase via reactive oxygen and nitrogen species signalling and its role for vascular function. British Journal of Pharmacology, 2017, 174, 1670-1689.	2.7	203
7	Nebivolol Inhibits Superoxide Formation by NADPH Oxidase and Endothelial Dysfunction in Angiotensin II–Treated Rats. Hypertension, 2006, 48, 677-684.	1.3	181
8	Effects of noise on vascular function, oxidative stress, and inflammation: mechanistic insight from studies in mice. European Heart Journal, 2017, 38, 2838-2849.	1.0	176
9	New Therapeutic Implications of Endothelial Nitric Oxide Synthase (eNOS) Function/Dysfunction in Cardiovascular Disease. International Journal of Molecular Sciences, 2019, 20, 187.	1.8	166
10	Measurement of NAD(P)H oxidase-derived superoxide with the luminol analogue L-012. Free Radical Biology and Medicine, 2004, 36, 101-111.	1.3	161
11	Crucial role for Nox2 and sleep deprivation in aircraft noise-induced vascular and cerebral oxidative stress, inflammation, and gene regulation. European Heart Journal, 2018, 39, 3528-3539.	1.0	147
12	Nebivolol Prevents Vascular NOS III Uncoupling in Experimental Hyperlipidemia and Inhibits NADPH Oxidase Activity in Inflammatory Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 615-621.	1.1	144
13	Short-term e-cigarette vapour exposure causes vascular oxidative stress and dysfunction: evidence for a close connection to brain damage and a key role of the phagocytic NADPH oxidase (NOX-2). European Heart Journal, 2020, 41, 2472-2483.	1.0	139
14	Detection of Superoxide and Peroxynitrite in Model Systems and Mitochondria by the Luminol Analogue L-012. Free Radical Research, 2004, 38, 259-269.	1.5	125
15	AT1-receptor blockade by telmisartan upregulates GTP-cyclohydrolase I and protects eNOS in diabetic rats. Free Radical Biology and Medicine, 2008, 45, 619-626.	1.3	112
16	Hydralazine is a powerful inhibitor of peroxynitrite formation as a possible explanation for its beneficial effects on prognosis in patients with congestive heart failure. Biochemical and Biophysical Research Communications, 2005, 338, 1865-1874.	1.0	106
17	Vascular Dysfunction in Experimental Diabetes Is Improved by Pentaerithrityl Tetranitrate but Not Isosorbide-5-Mononitrate Therapy. Diabetes, 2011, 60, 2608-2616.	0.3	86
18	Heme Oxygenase-1. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 1729-1735.	1.1	84

MATTHIAS OELZE

#	Article	IF	CITATIONS
19	Chronic therapy with isosorbide-5-mononitrate causes endothelial dysfunction, oxidative stress, and a marked increase in vascular endothelin-1 expression. European Heart Journal, 2013, 34, 3206-3216.	1.0	79
20	The Oxidative Stress Concept of Nitrate Tolerance and the Antioxidant Properties of Hydralazine. American Journal of Cardiology, 2005, 96, 25-36.	0.7	70
21	Pentaerythritol Tetranitrate Improves Angiotensin II–Induced Vascular Dysfunction via Induction of Heme Oxygenase-1. Hypertension, 2010, 55, 897-904.	1.3	66
22	CD40L contributes to angiotensin II-induced pro-thrombotic state, vascular inflammation, oxidative stress and endothelial dysfunction. Basic Research in Cardiology, 2013, 108, 386.	2.5	55
23	Taking up the cudgels for the traditional reactive oxygen and nitrogen species detection assays and their use in the cardiovascular system. Redox Biology, 2017, 12, 35-49.	3.9	52
24	Discovery of new therapeutic redox targets for cardioprotection against ischemia/reperfusion injury and heart failure. Free Radical Biology and Medicine, 2021, 163, 325-343.	1.3	48
25	Exacerbation of adverse cardiovascular effects of aircraft noise in an animal model of arterial hypertension. Redox Biology, 2020, 34, 101515.	3.9	36
26	The "exposome―concept – how environmental risk factors influence cardiovascular health. Acta Biochimica Polonica, 2019, 66, 269-283.	0.3	32
27	Monitoring White Blood Cell Mitochondrial Aldehyde Dehydrogenase Activity: Implications for Nitrate Therapy in Humans. Journal of Pharmacology and Experimental Therapeutics, 2009, 330, 63-71.	1.3	27
28	Regulation of Vascular Function and Inflammation via Cross Talk of Reactive Oxygen and Nitrogen Species from Mitochondria or NADPH Oxidase—Implications for Diabetes Progression. International Journal of Molecular Sciences, 2020, 21, 3405.	1.8	27
29	Comparison of Mitochondrial Superoxide Detection Ex Vivo/In Vivo by mitoSOX HPLC Method with Classical Assays in Three Different Animal Models of Oxidative Stress. Antioxidants, 2019, 8, 514.	2.2	23
30	Ablation of lysozyme M-positive cells prevents aircraft noise-induced vascular damage without improving cerebral side effects. Basic Research in Cardiology, 2021, 116, 31.	2.5	23
31	α1AMPK deletion in myelomonocytic cells induces a pro-inflammatory phenotype and enhances angiotensin II-induced vascular dysfunction. Cardiovascular Research, 2018, 114, 1883-1893.	1.8	22
32	Nitroglycerin induces DNA damage and vascular cell death in the setting of nitrate tolerance. Basic Research in Cardiology, 2016, 111, 52.	2.5	14
33	Direct comparison of inorganic nitrite and nitrate on vascular dysfunction and oxidative damage in experimental arterial hypertension. Nitric Oxide - Biology and Chemistry, 2021, 113-114, 57-69.	1.2	11
34	Detection of extracellular superoxide in isolated human immune cells and in an animal model of arterial hypertension using hydropropidine probe and HPLC analysis. Free Radical Biology and Medicine, 2021, 168, 214-225.	1.3	8
35	Comparison of three methods for <i>inÂvivo</i> quantification of glutathione in tissues of hypertensive rats. Free Radical Research, 2021, 55, 1048-1061.	1.5	5
36	Mechanistic Insights into Inorganic Nitrite-Mediated Vasodilation of Isolated Aortic Rings under Oxidative/Hypertensive Conditions and S-Nitros(yl)ation of Proteins in Germ-Free Mice. Biomedicines, 2022, 10, 730.	1.4	1