

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5238235/publications.pdf Version: 2024-02-01

ΥλΝΤΙ

#	Article	IF	CITATIONS
1	Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation. Nature Biotechnology, 2004, 22, 707-716.	17.5	320
2	Three-Dimensional Aggregates of Mesenchymal Stem Cells: Cellular Mechanisms, Biological Properties, and Applications. Tissue Engineering - Part B: Reviews, 2014, 20, 365-380.	4.8	318
3	Preconditioning Stem Cells for <i>In Vivo</i> Delivery. BioResearch Open Access, 2014, 3, 137-149.	2.6	144
4	Functionalization of Brain Region-specific Spheroids with Isogenic Microglia-like Cells. Scientific Reports, 2019, 9, 11055.	3.3	119
5	Nanotopography promoted neuronal differentiation of human induced pluripotent stem cells. Colloids and Surfaces B: Biointerfaces, 2016, 148, 49-58.	5.0	111
6	Controlling Redox Status for Stem Cell Survival, Expansion, and Differentiation. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-14.	4.0	108
7	Assembly of Human Stem Cell-Derived Cortical Spheroids and Vascular Spheroids to Model 3-D Brain-like Tissues. Scientific Reports, 2019, 9, 5977.	3.3	104
8	Extracellular Matrices Decellularized from Embryonic Stem Cells Maintained Their Structure and Signaling Specificity. Tissue Engineering - Part A, 2014, 20, 54-66.	3.1	69
9	Differential effects of acellular embryonic matrices on pluripotent stem cell expansion and neural differentiation. Biomaterials, 2015, 73, 231-242.	11.4	69
10	Roomâ€Temperature, Nearâ€Instantaneous Fabrication of Auxetic Materials with Constant Poisson's Ratio over Large Deformation. Advanced Materials, 2016, 28, 2822-2826.	21.0	67
11	Influence of Microenvironment on Mesenchymal Stem Cell Therapeutic Potency: From Planar Culture to Microcarriers. Frontiers in Bioengineering and Biotechnology, 2020, 8, 640.	4.1	61
12	Modeling Neurodegenerative Microenvironment Using Cortical Organoids Derived from Human Stem Cells. Tissue Engineering - Part A, 2018, 24, 1125-1137.	3.1	55
13	Engineering extracellular vesicles by threeâ€dimensional dynamic culture of human mesenchymal stem cells. Journal of Extracellular Vesicles, 2022, 11, .	12.2	45
14	Engineering Stem Cell-Derived Extracellular Matrices: Decellularization, Characterization, and Biological Function. Tissue Engineering - Part B: Reviews, 2020, 26, 402-422.	4.8	44
15	Neural patterning of human induced pluripotent stem cells in 3-D cultures for studying biomolecule-directed differential cellular responses. Acta Biomaterialia, 2016, 42, 114-126.	8.3	43
16	On the successful fabrication of auxetic polyurethane foams: Materials requirement, processing strategy and conversion mechanism. Polymer, 2016, 87, 98-107.	3.8	39
17	NAD+/NADH redox alterations reconfigure metabolism and rejuvenate senescent human mesenchymal stem cells in vitro. Communications Biology, 2020, 3, 774.	4.4	36
18	Process engineering of stem cell metabolism for large scale expansion and differentiation in bioreactors. Biochemical Engineering Journal, 2014, 84, 74-82.	3.6	35

Yan Li

#	Article	IF	CITATIONS
19	Derivation of Cortical Spheroids from Human Induced Pluripotent Stem Cells in a Suspension Bioreactor. Tissue Engineering - Part A, 2018, 24, 418-431.	3.1	35
20	Human Pluripotent Stem Cell-Derived Extracellular Vesicles: Characteristics and Applications. Tissue Engineering - Part B: Reviews, 2020, 26, 129-144.	4.8	34
21	Microenvironment Regulation of Pluripotent Stem Cell-Derived Neural Progenitor Aggregates by Human Mesenchymal Stem Cell Secretome. Tissue Engineering - Part A, 2014, 20, 2666-2679.	3.1	33
22	In Vitro Culture Expansion Shifts the Immune Phenotype of Human Adipose-Derived Mesenchymal Stem Cells. Frontiers in Immunology, 2021, 12, 621744.	4.8	31
23	Cryopreservation of pluripotent stem cell aggregates in defined proteinâ€free formulation. Biotechnology Progress, 2013, 29, 143-153.	2.6	30
24	Differential Effects of Heparin and Hyaluronic Acid on Neural Patterning of Human Induced Pluripotent Stem Cells. ACS Biomaterials Science and Engineering, 2018, 4, 4354-4366.	5.2	30
25	In vitro organogenesis from pluripotent stem cells. Organogenesis, 2014, 10, 159-163.	1.2	29
26	Differential Effects of Extracellular Vesicles of Lineage-Specific Human Pluripotent Stem Cells on the Cellular Behaviors of Isogenic Cortical Spheroids. Cells, 2019, 8, 993.	4.1	29
27	Microplastics exposure affects neural development of human pluripotent stem cell-derived cortical spheroids. Journal of Hazardous Materials, 2022, 435, 128884.	12.4	27
28	Wnt/Yes-Associated Protein Interactions During Neural Tissue Patterning of Human Induced Pluripotent Stem Cells. Tissue Engineering - Part A, 2018, 24, 546-558.	3.1	25
29	Neuroprotective Activities of Heparin, Heparinase III, and Hyaluronic Acid on the Aβ42-Treated Forebrain Spheroids Derived from Human Stem Cells. ACS Biomaterials Science and Engineering, 2018, 4, 2922-2933.	5.2	25
30	Genomics Analysis of Metabolic Pathways of Human Stem Cell-Derived Microglia-Like Cells and the Integrated Cortical Spheroids. Stem Cells International, 2019, 2019, 1-21.	2.5	24
31	Cell population balance of cardiovascular spheroids derived from human induced pluripotent stem cells. Scientific Reports, 2019, 9, 1295.	3.3	23
32	Intracellular labeling of mouse embryonic stem cell–derived neural progenitor aggregates with micron-sized particles of iron oxide. Cytotherapy, 2015, 17, 98-111.	0.7	22
33	Wnt-Notch Signaling Interactions During Neural and Astroglial Patterning of Human Stem Cells. Tissue Engineering - Part A, 2020, 26, 419-431.	3.1	22
34	Vascular differentiation from pluripotent stem cells in 3â€D auxetic scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1679-1689.	2.7	21
35	Alix and Syntenin-1 direct amyloid precursor protein trafficking into extracellular vesicles. BMC Molecular and Cell Biology, 2020, 21, 58.	2.0	20
36	Biogenesis of Extracellular Vesicles Produced from Human-Stem-Cell-Derived Cortical Spheroids Exposed to Iron Oxides. ACS Biomaterials Science and Engineering, 2021, 7, 1111-1122.	5.2	20

Yan Li

#	Article	IF	CITATIONS
37	Dynamic 3D On-Chip BBB Model Design, Development, and Applications in Neurological Diseases. Cells, 2021, 10, 3183.	4.1	20
38	Neural Differentiation of Spheroids Derived from Human Induced Pluripotent Stem Cells–Mesenchymal Stem Cells Coculture. Tissue Engineering - Part A, 2018, 24, 915-929.	3.1	19
39	Engineering Brain-Specific Pericytes from Human Pluripotent Stem Cells. Tissue Engineering - Part B: Reviews, 2020, 26, 367-382.	4.8	19
40	Cryopreservation of embryonic stem cellâ€derived multicellular neural aggregates labeled with micronâ€sized particles of iron oxide for magnetic resonance imaging. Biotechnology Progress, 2015, 31, 510-521.	2.6	15
41	Studying Heterotypic Cell–Cell Interactions in the Human Brain Using Pluripotent Stem Cell Models for Neurodegeneration. Cells, 2019, 8, 299.	4.1	15
42	The Use of Pluripotent Stem Cell-Derived Organoids to Study Extracellular Matrix Development during Neural Degeneration. Cells, 2019, 8, 242.	4.1	14
43	Wnt-YAP interactions in the neural fate of human pluripotent stem cells and the implications for neural organoid formation. Organogenesis, 2016, 12, 1-15.	1.2	13
44	Characterization of 3D pluripotent stem cell aggregates and the impact of their properties on bioprocessing. Process Biochemistry, 2017, 59, 276-288.	3.7	13
45	Cyclical aggregation extends in vitro expansion potential of human mesenchymal stem cells. Scientific Reports, 2020, 10, 20448.	3.3	13
46	Aggregationâ€induced integrated stress response rejuvenates cultureâ€expanded human mesenchymal stem cells. Biotechnology and Bioengineering, 2020, 117, 3136-3149.	3.3	13
47	Agitation in a microcarrier-based spinner flask bioreactor modulates homeostasis of human mesenchymal stem cells. Biochemical Engineering Journal, 2021, 168, 107947.	3.6	13
48	The Microenvironment of Embryoid Bodies Modulated the Commitment to Neural Lineage Postcryopreservation. Tissue Engineering - Part C: Methods, 2015, 21, 356-366.	2.1	8
49	Human Stem Cell-derived Aggregates of Forebrain Astroglia Respond to Amyloid Beta Oligomers. Tissue Engineering - Part A, 2020, 26, 527-542.	3.1	6
50	Long-Term Effects of Nanoscale Magnetite on Human Forebrain-like Tissue Development in Stem-Cell-Derived Cortical Spheroids. ACS Biomaterials Science and Engineering, 2022, 8, 801-813.	5.2	5
51	Engineering exosomal microRNAs in human pluripotent stem cells. , 2022, , 1-27.		3
52	Extracellular Vesicle Collection from Human Stem Cells Grown in Suspension Bioreactors. Methods in Molecular Biology, 2021, , 193-204.	0.9	3
53	Hydrolytic Degradation of 3D-Printed Poly (Lactic Acid) Structures. Sustainable Development Research (ISSN 2690-9898 E-ISSN 2690-9901), 2021, 3, p17.	0.7	0