
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5237848/publications.pdf Version: 2024-02-01

Μιτιαν Καιτιν

#	Article	IF	CITATIONS
1	The Influence of Surface Modification on Bacterial Adhesion to Titanium-Based Substrates. ACS Applied Materials & Interfaces, 2015, 7, 1644-1651.	4.0	269
2	Mechanisms and improvements in the friction and wear behavior using MoS2 nanotubes as potential oil additives. Wear, 2012, 280-281, 36-45.	1.5	226
3	Clonal and Capsular Types Decide Whether Pneumococci Will Act as a Primary or Opportunistic Pathogen. Clinical Infectious Diseases, 2006, 42, 451-459.	2.9	215
4	The wetting of steel, DLC coatings, ceramics and polymers with oils and water: The importance and correlations of surface energy, surface tension, contact angle and spreading. Applied Surface Science, 2014, 293, 97-108.	3.1	181
5	Wear and friction behaviour of poly-ether-ether-ketone (PEEK) filled with graphene, WS 2 and CNT nanoparticles. Wear, 2015, 332-333, 855-862.	1.5	143
6	The Stribeck curve and lubrication design for non-fully wetted surfaces. Wear, 2009, 267, 1232-1240.	1.5	137
7	Influence of flash temperatures on the tribological behaviour in low-speed sliding: a review. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 374, 390-397.	2.6	134
8	The correlation between the surface energy, the contact angle and the spreading parameter, and their relevance for the wetting behaviour of DLC with lubricating oils. Tribology International, 2013, 66, 225-233.	3.0	134
9	Influence of deep-cryogenic treatment on wear resistance of vacuum heat-treated HSS. Vacuum, 2006, 80, 507-518.	1.6	122
10	Review of boundary lubrication mechanisms of DLC coatings used in mechanical applications. Meccanica, 2008, 43, 623-637.	1.2	114
11	Various MoS2-, WS2- and C-Based Micro- and Nanoparticles in Boundary Lubrication. Tribology Letters, 2014, 53, 585-597.	1.2	99
12	A comparison of the tribological behaviour of steel/steel, steel/DLC and DLC/DLC contacts when lubricated with mineral and biodegradable oils. Wear, 2006, 261, 22-31.	1.5	97
13	The Effect of Doping Elements and Oil Additives on the Tribological Performance of Boundary-Lubricated DLC/DLC Contacts. Tribology Letters, 2004, 17, 679-688.	1.2	95
14	The Effect of Wetting and Surface Energy on the Friction and Slip in Oil-Lubricated Contacts. Tribology Letters, 2013, 52, 185-194.	1.2	95
15	The tribological performance of DLC-coated gears lubricated with biodegradable oil in various pinion/gear material combinations. Wear, 2005, 259, 1270-1280.	1.5	92
16	Differences in the tribological mechanisms when using non-doped, metal-doped (Ti, WC), and non-metal-doped (Si) diamond-like carbon against steel under boundary lubrication, with and without oil additives. Thin Solid Films, 2006, 515, 2734-2747.	0.8	92
17	The effect of temperature on the tribological mechanisms and reactivity of hydrogenated, amorphous diamond-like carbon coatings under oil-lubricated conditions. Thin Solid Films, 2007, 515, 3644-3652.	0.8	79
18	Effect of the type, size and concentration of solid lubricants on the tribological properties of the polymer PEEK. Wear, 2016, 364-365, 31-39.	1.5	79

#	Article	IF	CITATIONS
19	Comparison of different theoretical models for flash temperature calculation under fretting conditions. Tribology International, 2001, 34, 831-839.	3.0	76
20	Metal-doped (Ti, WC) diamond-like-carbon coatings: Reactions with extreme-pressure oil additives under tribological and static conditions. Thin Solid Films, 2010, 518, 4336-4344.	0.8	75
21	Nanoparticles as novel lubricating additives in a green, physically based lubrication technology for DLC coatings. Wear, 2013, 303, 480-485.	1.5	74
22	Influence of the processing temperature on the tribological and mechanical properties of poly-ether-ether-ketone (PEEK) polymer. Tribology International, 2016, 94, 92-97.	3.0	72
23	Pyridinium based dicationic ionic liquids as base lubricants or lubricant additives. Tribology International, 2015, 82, 245-254.	3.0	68
24	Influence of concentration and anion alkyl chain length on tribological properties of imidazolium sulfate ionic liquids as additives to glycerol in steel–steel contact lubrication. Tribology International, 2016, 97, 234-243.	3.0	65
25	Influence of surface roughness and running-in on the lubrication of steel surfaces with oil containing MoS2 nanotubes in all lubrication regimes. Tribology International, 2013, 61, 40-47.	3.0	62
26	Adsorption mechanisms for fatty acids on DLC and steel studied by AFM and tribological experiments. Applied Surface Science, 2013, 283, 460-470.	3.1	58
27	The lubrication of DLC coatings with mineral and biodegradable oils having different polar and saturation characteristics. Surface and Coatings Technology, 2006, 200, 4515-4522.	2.2	57
28	Characterization of lignin peroxidase-encoding genes from lignin-degrading basidiomycetes. Gene, 1990, 89, 145-150.	1.0	55
29	Wear mechanisms in oil-lubricated and dry fretting of silicon nitride against bearing steel contacts. Wear, 1997, 210, 27-38.	1.5	55
30	Parameters influencing the running-in and long-term tribological behaviour of polyamide (PA) against polyacetal (POM) and steel. Wear, 2012, 290-291, 140-148.	1.5	55
31	The dominant effect of temperature on the fatigue behaviour of polymer gears. Wear, 2017, 376-377, 1339-1346.	1.5	54
32	Use of equations for wear volume determination in fretting experiments. Wear, 2000, 237, 39-48.	1.5	53
33	Comparing surface topography parameters of rough surfaces obtained with spectral moments and deterministic methods. Tribology International, 2016, 93, 137-141.	3.0	51
34	High temperature phase transformations under fretting conditions. Wear, 2001, 249, 172-181.	1.5	46
35	The effect of residual stresses in functionally graded alumina–ZTA composites on their wear and friction behaviour. Journal of the European Ceramic Society, 2007, 27, 151-156.	2.8	45
36	How anion and cation species influence the tribology of a green lubricant based on ionic liquids. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2012, 226, 933-951.	1.0	45

#	Article	IF	CITATIONS
37	Wear and friction behavior of alumina ceramics in aqueous solutions with different pH. Wear, 2003, 254, 1141-1146.	1.5	44
38	Tribological behaviour of DLC coatings in combination with biodegradable lubricants. Tribology International, 2004, 37, 983-989.	3.0	44
39	Lubrication of DLC-coated surfaces with MoS2 nanotubes in all lubrication regimes: Surface roughness and running-in effects. Wear, 2013, 303, 361-370.	1.5	44
40	Influence of contact parameters on the tribological behaviour of various graphite/graphite sliding electrical contacts. Wear, 2018, 406-407, 75-83.	1.5	44
41	The tribological performance of DLC coatings under oil-lubricated fretting conditions. Tribology International, 2006, 39, 1060-1067.	3.0	43
42	Pyrrolidinium sulfate and ammonium sulfate ionic liquids as lubricant additives for steel/steel contact lubrication. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2012, 226, 923-932.	1.0	43
43	Influence of temperature on tribological behaviour of ionic liquids as lubricants and lubricant additives. Lubrication Science, 2014, 26, 107-115.	0.9	42
44	Tribological performance of titanium doped and pure DLC coatings combined with a synthetic bio-lubricant. Wear, 2006, 261, 9-14.	1.5	41
45	Non-conventional inverse-Stribeck-curve behaviour and other characteristics of DLC coatings in all lubrication regimes. Wear, 2013, 297, 911-918.	1.5	41
46	Tribological behaviour of a PEEK polymer containing solid MoS ₂ lubricants. Lubrication Science, 2016, 28, 27-42.	0.9	41
47	Synergisms and antagonisms between MoS2 nanotubes and representative oil additives under various contact conditions. Tribology International, 2019, 129, 137-150.	3.0	41
48	Lubrication performance of graphene-containing oil on steel and DLC-coated surfaces. Tribology International, 2019, 138, 59-67.	3.0	40
49	Influence of cooling speed on the microstructure and wear behaviour of hypereutectic Fe–Cr–C hardfacings. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 576, 243-251.	2.6	39
50	The Formation of Tribofilms of MoS2 Nanotubes on Steel and DLC-Coated Surfaces. Tribology Letters, 2014, 55, 381-391.	1.2	38
51	Friction and anti-galling properties of hexagonal boron nitride (h-BN) in aluminium forming. Wear, 2017, 388-389, 2-8.	1.5	38
52	Effect of counterface roughness on abrasive wear of hydroxyapatite. Wear, 2002, 252, 679-685.	1.5	35
53	Tribochemistry in sliding wear of TiCN–Ni-based cermets. Journal of Materials Research, 2008, 23, 1214-1227.	1.2	35
54	Comparison of the effects of the lubricant-molecule chain length and the viscosity on the friction and wear of diamond-like-carbon coatings and steel. Tribology International, 2012, 50, 57-65.	3.0	35

#	Article	IF	CITATIONS
55	Interactions between MoS2 nanotubes and conventional additives in model oils. Tribology International, 2017, 110, 140-150.	3.0	35
56	Development and use of an apparatus for tribological evaluation of ceramic-based brake materials. Wear, 2005, 259, 1079-1087.	1.5	33
57	Load-Dependent Transition in Sliding Wear Properties of TiCN?WC?Ni Cermets. Journal of the American Ceramic Society, 2007, 90, 1534-1540.	1.9	33
58	Tribological properties of polyamide (PA6) in self-mated contacts and against steel as a stationary and moving body. Wear, 2017, 378-379, 17-26.	1.5	33
59	Friction and wear performance of functionally graded ductile iron for brake pads. Wear, 2017, 382-383, 85-94.	1.5	33
60	Local mechanical and frictional properties of Ag/MoS2-doped self-lubricating Ni-based laser claddings and resulting high temperature vacuum performance. Materials and Design, 2020, 186, 108296.	3.3	33
61	Influence of roughness on wear transition in glass-infiltrated alumina. Wear, 2003, 255, 669-676.	1.5	32
62	Wear Mechanisms of Glass-Infiltrated Alumina Sliding Against Alumina in Water. Journal of the American Ceramic Society, 2005, 88, 346-352.	1.9	32
63	Wear Behavior of Deep-Cryogenic Treated High-Speed Steels at Different Loads. Materials and Manufacturing Processes, 2006, 21, 741-746.	2.7	32
64	How to determine the number of asperity peaks, their radii and their heights for engineering surfaces: A critical appraisal. Wear, 2013, 300, 143-154.	1.5	32
65	Initiation and evolution of the aluminium-alloy transfer on hot-work tool steel at temperatures from 20 °C to 500 °C. Wear, 2014, 319, 234-244.	1.5	32
66	Friction and wear behaviour of SiAlON ceramics under fretting contacts. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 359, 228-236.	2.6	31
67	Surface charge as a new concept for boundary lubrication of ceramics with water. Journal Physics D: Applied Physics, 2006, 39, 3138-3149.	1.3	31
68	Characterisation of food contact non-stick coatings containing TiO ₂ nanoparticles and study of their possible release into food. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2017, 34, 421-433.	1.1	30
69	Improving the performance of a proportional 4/3 water–hydraulic valve by using a diamond-like-carbon coating. Wear, 2013, 297, 1016-1024.	1.5	29
70	Influence of the contact parameters and several graphite materials on the tribological behaviour of graphite/copper two-disc electrical contacts. Tribology International, 2018, 126, 192-205.	3.0	29
71	Water-lubricated behaviour of AISI 440C stainless steel and a DLC coating for an orbital hydraulic motor application. Tribology International, 2019, 131, 128-136.	3.0	29
72	Experimental validation of the lifetime performance of a proportional 4/3 hydraulic valve operating in water. Tribology International, 2011, 44, 2013-2021.	3.0	28

#	Article	IF	CITATIONS
73	The effect of temperature and sliding distance on coated (CrN, TiAlN) and uncoated nitrided hot-work tool steels against an aluminium alloy. Wear, 2015, 330-331, 371-379.	1.5	28
74	Chemical aspects of wear of alumina ceramics. Wear, 2001, 250, 318-321.	1.5	26
75	The Effect of pH on the Wear of Water-Lubricated Alumina and Zirconia Ceramics. Tribology Letters, 2004, 17, 727-732.	1.2	26
76	Evolution of the nano-scale mechanical properties of tribofilms formed from low- and high-SAPS oils and ZDDP on DLC coatings and steel. Tribology International, 2016, 96, 43-56.	3.0	26
77	Effect of slip amplitude on the fretting wear of silicon nitride against silicon nitride. Wear, 1996, 192, 11-20.	1.5	23
78	Effect of fretting conditions on the wear of silicon nitride against bearing steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 220, 191-199.	2.6	22
79	Chemical reactivity of silicon nitride with steel and oxidised steel between 500 and 1200°C. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 281, 28-36.	2.6	22
80	Wear mechanisms associated with the lubrication of zirconia ceramics in various aqueous solutions. Journal of the European Ceramic Society, 2006, 26, 223-232.	2.8	22
81	Analyses of the Long-Term Performance and Tribological Behavior of an Axial Piston Pump Using Diamondlike-Carbon-Coated Piston Shoes and Biodegradable Oil. Journal of Tribology, 2008, 130, .	1.0	22
82	Neutron-reflectometry study of alcohol adsorption on various DLC coatings. Applied Surface Science, 2014, 288, 405-410.	3.1	22
83	Room and high temperature reciprocated sliding wear behavior of SiC-WC composites. Ceramics International, 2017, 43, 16827-16834.	2.3	22
84	Performance Evaluation of Solid Lubricants Under Machining-Like Conditions. Procedia CIRP, 2018, 77, 401-404.	1.0	22
85	A tentative explanation for the tribochemical effects in fretting wear. Wear, 2001, 250, 681-689.	1.5	21
86	The influence of viscosity on the friction in lubricated DLC contacts at various sliding velocities. Tribology International, 2009, 42, 1752-1757.	3.0	21
87	Criteria and properties of the asperity peaks on 3D engineering surfaces. Wear, 2013, 308, 95-104.	1.5	21
88	Atomic force microscopy and tribology study of the adsorption of alcohols on diamond-like carbon coatings and steel. Applied Surface Science, 2013, 271, 317-328.	3.1	21
89	Fatty Acid Adsorption on Several DLC Coatings Studied by Neutron Reflectometry. Tribology Letters, 2014, 53, 199-206.	1.2	21
90	Aqueous electrophoretic deposition of bulk polyether ether ketone (PEEK). Journal of Materials Processing Technology, 2015, 223, 58-64.	3.1	21

#	Article	IF	CITATIONS
91	Interactions in silicon nitride ceramics vs. steel contact under fretting conditions. Wear, 1999, 225-229, 1276-1283.	1.5	20
92	Submicron-scale experimental analyses of multi-asperity contacts with different roughnesses. Tribology International, 2018, 119, 667-671.	3.0	20
93	Real contact temperatures as the criteria for the reactivity of diamond-like-carbon coatings with oil additives. Thin Solid Films, 2010, 518, 2029-2036.	0.8	19
94	Effect of ZDDP concentration on the thermal film formation on steel, hydrogenated non-doped and Si-doped DLC. Applied Surface Science, 2016, 383, 191-199.	3.1	19
95	Tribology of solid-lubricated liquid carbon dioxide assisted machining. CIRP Annals - Manufacturing Technology, 2020, 69, 69-72.	1.7	19
96	Comparison of Alcohol and Fatty Acid Adsorption on Hydrogenated DLC Coatings Studied by AFM and Tribological Tests. Strojniski Vestnik/Journal of Mechanical Engineering, 2013, 59, 707-718.	0.6	18
97	Miscibility and tribological investigations of ionic liquids in biodegradable esters. Lubrication Science, 2014, 26, 463-487.	0.9	18
98	Fully Transparent Nanocomposite Coating with an Amorphous Alumina Matrix and Exceptional Wear and Scratch Resistance. Advanced Functional Materials, 2016, 26, 4362-4369.	7.8	17
99	Adsorption of alcohols and fatty acids onto hydrogenated (a-C:H) DLC coatings. Applied Surface Science, 2016, 363, 466-476.	3.1	17
100	Determination of friction coefficient in cutting processes: comparison between open and closed tribometers. Procedia CIRP, 2019, 82, 101-106.	1.0	17
101	New strategy for reducing the EHL friction in steel contacts using additive-formed oleophobic boundary films. Friction, 2021, 9, 1346-1360.	3.4	17
102	Influence of additives and their molecular structure on the static and dynamic wetting of oil on steel at room temperature. Applied Surface Science, 2019, 490, 420-429.	3.1	16
103	Microstructural Changes and Contact Temperatures During Fretting in Steel-Steel Contact. Journal of Tribology, 2001, 123, 670-675.	1.0	15
104	Structural changes in ZrO2 ceramics during sliding under various environments. Wear, 2005, 259, 562-568.	1.5	15
105	Effect of the Slide-to-Roll Ratio and the Contact Kinematics on the Elastohydrodynamic Friction in Diamond-Like-Carbon Contacts with Different Wetting Behaviours. Tribology Letters, 2015, 60, 1.	1.2	14
106	Wear of silicon nitride ceramics under fretting conditions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 215, 125-133.	2.6	13
107	Wear of hydroxyapatite sliding against glass-infiltrated alumina. Journal of Materials Research, 2003, 18, 27-36.	1.2	13
108	Aluminium-alloy transfer to a CrN coating and a hot-work tool steel at room and elevated temperatures. Wear, 2015, 340-341, 82-89.	1.5	13

#	Article	IF	CITATIONS
109	Microstructure and tribological properties of plasma sprayed alumina and alumina-graphite coatings. Surface and Coatings Technology, 2018, 350, 401-409.	2.2	13
110	Effect of polarity and various contact pairing combinations of electrographite, polymer-bonded graphite and copper on the performance of sliding electrical contacts. Wear, 2019, 426-427, 1163-1175.	1.5	13
111	Frictional behaviour of imidazolium sulfate ionic liquid additives under mixed slide to roll conditions: part 2 — influence of concentration and chemical composition of ionic liquid additive. Lubrication Science, 2015, 27, 489-503.	0.9	12
112	Relationship Between the Nanoscale Topographical and Mechanical Properties of Tribochemical Films on DLC Coatings and Their Macroscopic Friction Behavior. Tribology Letters, 2015, 59, 1.	1.2	12
113	Effects of slide-to-roll ratio and temperature on the tribological behaviour in polymer-steel contacts and a comparison with the performance of real-scale gears. Wear, 2021, 477, 203789.	1.5	12
114	In-situ Observations of a Multi-Asperity Real Contact Area on a Submicron Scale. Strojniski Vestnik/Journal of Mechanical Engineering, 2017, 63, 351-362.	0.6	12
115	A Homodyne Quadrature Laser Interferometer for Micro-Asperity Deformation Analysis. Sensors, 2013, 13, 703-720.	2.1	11
116	Physicochemical and tribological characterizations of WDLC coatings and ionic-liquid lubricant additives: Potential candidates for low friction under boundary-lubrication conditions. Tribology International, 2020, 151, 106482.	3.0	11
117	Effect of graphite concentration on the tribological performance of alumina coatings. Journal of Alloys and Compounds, 2020, 827, 154135.	2.8	11
118	A rolling-contact device that uses the ball-on-flat testing principle. Wear, 2004, 256, 335-341.	1.5	10
119	Mechanical behaviour and constitutive models of ZDDP tribofilms on DLC coatings using nano-indentation data and finite element modelling. Tribology International, 2016, 95, 19-26.	3.0	10
120	Green Tribology for the Sustainable Engineering of the Future. Strojniski Vestnik/Journal of Mechanical Engineering, 2019, 65, 709-727.	0.6	10
121	Frictional behaviour of imidazolium sulfate ionic liquid additives under mixed slideâ€ŧoâ€ŧoll conditions: Part 1 — Variation of mixtures with identical weight ratio of ionic liquid additive. Lubrication Science, 2015, 27, 463-477.	0.9	9
122	Submicron-scale experimental analyses of the multi-asperity contact behaviour of various steels, an aluminium alloy and a polymer. Tribology International, 2020, 141, 105955.	3.0	9
123	Long-term treatment of invasive sinus, tracheobroncheal, pulmonary and intracerebral aspergillosis in acute lymphoblastic leukaemia. Infection, 2012, 40, 81-85.	2.3	8
124	Methodology of a statistical and DOE approach to the prediction of performance in tribology – A DLC boundary-lubrication case study. Tribology International, 2016, 101, 10-24.	3.0	8
125	Wear-coefficient analyses for polymer-gear life-time predictions: A critical appraisal of methodologies. Wear, 2021, 480-481, 203944.	1.5	8
126	Influence of Mechanical Pressure and Temperature on the Chemical Interaction Between Steel and Silicon Nitride Ceramics. Journal of Materials Research, 2000, 15, 1367-1376.	1.2	7

#	Article	IF	CITATIONS
127	Designing Tribological Interface for Efficient and Green DLC Lubrication: The Role of Coatings and Lubricants. Tribology Online, 2012, 7, 112-118.	0.2	7
128	Additive chemical structure and its effect on the wetting behaviour of oil at 100â€Â°C. Applied Surface Science, 2020, 506, 145020.	3.1	7
129	A reduced-scale testing machine for tribological evaluation of brake materials. Tribology and Interface Engineering Series, 2005, 48, 799-806.	0.0	6
130	Characteristics of the stationary behaviour of water- and oil-based power-control hydraulics. Mechanika, 2014, 20, .	0.3	6
131	Additive Adsorption on DLC Coatings in Static and Tribological Conditions Using Neutron Reflectometry. Frontiers in Mechanical Engineering, 2019, 5, .	0.8	6
132	Differences in nano-topography and tribochemistry of ZDDP tribofilms from variations in contact configuration with steel and DLC surfaces. Friction, 2022, 10, 296-315.	3.4	6
133	Effect of Expanded Graphite on Mechanical and Tribological Properties of Polyamide 6/Glass Fibre Composites. Advances in Polymer Technology, 2022, 2022, 1-8.	0.8	6
134	Advantages of using the ball-on-flat device in rolling-contact testing of ceramics. Journal of the European Ceramic Society, 2004, 24, 11-15.	2.8	5
135	Improvement of the Tribological Properties of Alumina Coatings by Zirconia Addition. Coatings, 2021, 11, 991.	1.2	5
136	Reconfigurable Surface Micropatterns Based on the Magnetic Field-Induced Shape Memory Effect in Magnetoactive Elastomers. Polymers, 2021, 13, 4422.	2.0	5
137	The effect of slip amplitude and test time on fretting wear in metal-metal contact. TriboTest Journal: Tribology and Lubrication in Practice, 1996, 3, 149-165.	0.7	4
138	Experimentally derived friction model to evaluate the anti-wear and friction-modifier additives in steel and DLC contacts. Tribology International, 2017, 111, 116-137.	3.0	4
139	Tribological performance and degradation of 1â€ <i>n</i> â€butylâ€1â€methylpyrrolidinium methylsulfate ionic liquid in glycerol as lubricant for steelâ€steel sliding contacts. Lubrication Science, 2019, 31, 137-149.	0.9	4
140	Influence of a Diamond-Like Carbon-Coated Mechanical Part on the Operation of an Orbital Hydraulic Motor in Water. Metals, 2019, 9, 466.	1.0	4
141	Effect of base oil lubrication in comparison with non-lubricated sliding in diamond-like carbon contacts. Tribology - Materials, Surfaces and Interfaces, 2011, 5, 53-58.	0.6	3
142	Ab-initioinvestigation of chemical-bond formation at the diamond-like carbon surface. Lubrication Science, 2014, 26, 440-445.	0.9	3
143	Galling growth analysis in metal forming. Manufacturing Letters, 2018, 16, 32-35.	1.1	3
144	Tribological performance of a <scp>UHMWPE</scp> â€based multiscale composite under different lubrication and loads. Lubrication Science, 2022, 34, 480-492.	0.9	3

#	Article	IF	CITATIONS
145	Sliding Evolution of the Mechanical Behaviour of Zinc Dialkyldithiophosphate Tribofilms on Diamond-Like Carbon Coatings. Tribology Letters, 2016, 62, 1.	1.2	2
146	AN ANALYTICAL COMPARISON OF HYDRAULIC SYSTEMS BASED ON WATER AND ON OIL. Proceedings of the JFPS International Symposium on Fluid Power, 2008, 2008, 679-684.	0.1	2
147	Effects of the tribological interface properties on the contact temperature calculation. Tribology Series, 2000, , 533-540.	0.1	1
148	Traditional problems, yet new challenges, in lubrication science. Lubrication Science, 2013, 25, 249-250.	0.9	1
149	Aqueous Lubrication of Ceramics. , 2014, , 237-268.		1
150	Highâ€speed optical imaging of liquid film flow and liquid macroâ€slip over free surfaces with different surface energies. Lubrication Science, 2017, 29, 557-566.	0.9	1
151	Elasto-hydrodynamic friction changes on steel surfaces arising from the modified surface energy of the steel due to additive boundary films. Tribology International, 2021, 164, 107203.	3.0	1
152	Comparison of the fretting wear of 100Cr6/100Cr6, Si3N4/Si3N4 and Si3N4/100Cr6 contacts in lubricated and dry conditions. Lubrication Science, 1997, 9, 391-408.	0.9	0
153	Key governing factors for the tribochemical changes in the interface films. Tribology Series, 2000, 38, 655-666.	0.1	0
154	Rolling and rolling-to-sliding contact behaviour of DLC coatings. Tribology and Interface Engineering Series, 2005, 48, 213-220.	0.0	0
155	Boundary Lubrication of DLC Coatings With Conventional Oils. , 2005, , 443.		0
156	A Viscosity-Based Study of the Tribo-Physical Effects in Boundary-Lubricated DLC Contacts. , 2008, , .		0
157	Special issue on some current trends in improving boundary lubrication. Lubrication Science, 2010, 22, 207-208.	0.9	0
158	Case Study: Max Phase—Ti ₃ Sic ₂ ., 2011, , 185-196.		0
159	Case Study: Transformationâ€Toughened Zirconia. , 2011, , 142-166.		0
160	Case Study: Sialon Ceramics. , 2011, , 167-184.		0
161	Case Study: Titanium Diboride Ceramics and Composites. , 2011, , 197-210.		0
162	Case Study: Polymerâ€Ceramic Biocomposites. , 2011, , 233-250.		0

#	Article	IF	CITATIONS
163	Case Study: Nanocrystalline Yttriaâ€6tabilized Tetragonal Zirconia Polycrystalline Ceramics. , 2011, , 325-337.		Ο
164	Case Study: Nanostructured Tungsten Carbide–Zirconia Nanocomposites. , 2011, , 338-350.		0
165	Case Study: Magnesium–Silicon Carbide Particulateâ€Reinforced Composites. , 2011, , 362-376.		Ο
166	Case Study: Titanium Carbonitride–Nickelâ€Based Cermets. , 2011, , 377-406.		0
167	Case Study: (W,Ti)C–Co Cermets. , 2011, , 407-419.		Ο
168	Case Study: Sliding Wear of Alumina in a Cryogenic Environment. , 2011, , 439-453.		0
169	Case Study: Sliding Wear of Selfâ€Mated Tetragonal Zirconia Ceramics in Liquid Nitrogen. , 2011, , 454-468.		Ο
170	Case Study: Sliding Wear of Silicon Carbide in a Cryogenic Environment. , 2011, , 469-484.		0
171	Case Study: Classâ€Infiltrated Alumina. , 2011, , 276-286.		Ο
172	Case Study: Natural Tooth and Dental Restorative Materials. , 2011, , 251-275.		0
173	Tribological research of different material pairs for water hydraulic seat type of valve. , 2017, , .		Ο
174	Friction and Wear of Ceramics. , 2017, , 542-549.		0
175	Tribology of the PEEK Polymer Filled with Solid Lubricants. , 2018, , 345-359.		0
176	Wear and Tribology Behavior of Superelastic Ni-Ti Tubes under Fatigue Cycling in Compression. , 2022, ,		0