Yong-Wei Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5237606/publications.pdf

Version: 2024-02-01

218381 288905 1,939 65 26 40 citations h-index g-index papers 68 68 68 2854 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	ADAMTS12 promotes migration and epithelial-mesenchymal transition and predicts poor prognosis for pancreatic cancer. Hepatobiliary and Pancreatic Diseases International, 2023, 22, 169-178.	0.6	4
2	Characterization of DNA damage response deficiency in pancreatic cancer patients from China. Cancer Communications, 2022, 42, 70-74.	3.7	5
3	A low amino acid environment promotes cell macropinocytosis through the YY1-FGD6 axis in Ras-mutant pancreatic ductal adenocarcinoma. Oncogene, 2022, 41, 1203-1215.	2.6	9
4	Characterization of the genomic landscape in large-scale Chinese patients with pancreatic cancer. EBioMedicine, 2022, 77, 103897.	2.7	29
5	IRAK2-NF-κB signaling promotes glycolysis-dependent tumor growth in pancreatic cancer. Cellular Oncology (Dordrecht), 2022, 45, 367-379.	2.1	12
6	Increased SPON1 promotes pancreatic ductal adenocarcinoma progression by enhancing ILâ€6 transâ€signalling. Cell Proliferation, 2022, , e13237.	2.4	5
7	HOXA10 promote pancreatic cancer progression via directly activating canonical NF-κB signaling pathway. Carcinogenesis, 2022, 43, 787-796.	1.3	8
8	Modeling of cancer-related body-wide effects identifies LTB4 as a diagnostic biomarker for pancreatic cancer. EBioMedicine, 2022, 80, 104050.	2.7	7
9	SULF2 enhances GDF15-SMAD axis to facilitate the initiation and progression of pancreatic cancer. Cancer Letters, 2022, 538, 215693.	3.2	14
10	Glycolysis addiction compensating for a defective pentose phosphate pathway confers gemcitabine sensitivity in SETD2-deficient pancreatic cancer. Biochemical and Biophysical Research Communications, 2022, 615, 9-16.	1.0	3
11	Integrated genomic and transcriptomic analysis reveals unique characteristics of hepatic metastases and pro-metastatic role of complement C1q in pancreatic ductal adenocarcinoma. Genome Biology, 2021, 22, 4.	3.8	28
12	Identification of a subset of immunosuppressive P2RX1-negative neutrophils in pancreatic cancer liver metastasis. Nature Communications, 2021, 12, 174.	5.8	60
13	Deciphering the genomic and IncRNA landscapes of aerobic glycolysis identifies potential therapeutic targets in pancreatic cancer. International Journal of Biological Sciences, 2021, 17, 107-118.	2.6	16
14	The short isoform of PRLR suppresses the pentose phosphate pathway and nucleotide synthesis through the NEK9-Hippo axis in pancreatic cancer. Theranostics, 2021, 11, 3898-3915.	4.6	25
15	The RNA methyltransferase NSUN6 suppresses pancreatic cancer development by regulating cell proliferation. EBioMedicine, 2021, 63, 103195.	2.7	45
16	SF3B1 mutation in pancreatic cancer contributes to aerobic glycolysis and tumor growth through a PP2A–câ€Myc axis. Molecular Oncology, 2021, 15, 3076-3090.	2.1	14
17	Single-cell analysis of pancreatic ductal adenocarcinoma identifies a novel fibroblast subtype associated with poor prognosis but better immunotherapy response. Cell Discovery, 2021, 7, 36.	3.1	109
18	CD74 promotes perineural invasion of cancer cells and mediates neuroplasticity via the AKT/EGR-1/GDNF axis in pancreatic ductal adenocarcinoma. Cancer Letters, 2021, 508, 47-58.	3.2	25

#	Article	IF	CITATIONS
19	Patients with hepatic oligometastatic pancreatic body/tail ductal adenocarcinoma may benefit from synchronous resection. Hpb, 2020, 22, 91-101.	0.1	32
20	Loss of Setd2 promotes Kras-induced acinar-to-ductal metaplasia and epithelia–mesenchymal transition during pancreatic carcinogenesis. Gut, 2020, 69, 715-726.	6.1	47
21	Endoplasmic Reticulum stress-dependent expression of ERO1L promotes aerobic glycolysis in Pancreatic Cancer. Theranostics, 2020, 10, 8400-8414.	4.6	47
22	Multi-Drug–Resistant Bacterial Infection after Pancreatoduodenectomy: Risk Factors and Clinical Impact. Surgical Infections, 2020, 21, 793-798.	0.7	4
23	Serotonin-RhoA/ROCK axis promotes acinar-to-ductal metaplasia in caerulein-induced chronic pancreatitis. Biomedicine and Pharmacotherapy, 2020, 125, 109999.	2.5	26
24	Perineural Invasion Reprograms the Immune Microenvironment through Cholinergic Signaling in Pancreatic Ductal Adenocarcinoma. Cancer Research, 2020, 80, 1991-2003.	0.4	80
25	Ikarugamycin inhibits pancreatic cancer cell glycolysis by targeting hexokinase 2. FASEB Journal, 2020, 34, 3943-3955.	0.2	25
26	Molecular markers associated with perineural invasion in pancreatic ductal adenocarcinoma. Oncology Letters, 2020, 20, 5.	0.8	24
27	DKK2 Impairs Tumor Immunity Infiltration and Correlates with Poor Prognosis in Pancreatic Ductal Adenocarcinoma. Journal of Immunology Research, 2019, 2019, 1-12.	0.9	8
28	THZ1 reveals CDK7-dependent transcriptional addictions in pancreatic cancer. Oncogene, 2019, 38, 3932-3945.	2.6	44
29	GABRP regulates chemokine signalling, macrophage recruitment and tumour progression in pancreatic cancer through tuning KCNN4-mediated Ca ²⁺ signalling in a GABA-independent manner. Gut, 2019, 68, 1994-2006.	6.1	93
30	CD90 highly expressed population harbors a stemness signature and creates an immunosuppressive niche in pancreatic cancer. Cancer Letters, 2019, 453, 158-169.	3.2	21
31	Transcription factor NFAT5 contributes to the glycolytic phenotype rewiring and pancreatic cancer progression via transcription of PGK1. Cell Death and Disease, 2019, 10, 948.	2.7	48
32	Targeting Purinergic Receptor P2Y2 Prevents the Growth of Pancreatic Ductal Adenocarcinoma by Inhibiting Cancer Cell Glycolysis. Clinical Cancer Research, 2019, 25, 1318-1330.	3.2	78
33	Current treatment status in pancreatic neuroendocrine neoplasms. Chinese Clinical Oncology, 2019, 8, 20-20.	0.4	4
34	Clinical significance of programmed death 1/programmed death ligand 1 pathway in gastric neuroendocrine carcinomas. World Journal of Gastroenterology, 2019, 25, 1684-1696.	1.4	29
35	SFRP4 is a prognostic marker and correlated with Treg cell infiltration in pancreatic ductal adenocarcinoma. American Journal of Cancer Research, 2019, 9, 363-377.	1.4	8
36	Aberrant upregulation of KLK10 promotes metastasis via enhancement of EMT and FAK/SRC/ERK axis in PDAC. Biochemical and Biophysical Research Communications, 2018, 499, 584-593.	1.0	36

#	Article	IF	CITATIONS
37	IL22RA1/STAT3 Signaling Promotes Stemness and Tumorigenicity in Pancreatic Cancer. Cancer Research, 2018, 78, 3293-3305.	0.4	85
38	Decreased expression of USP9X is associated with poor prognosis in Chinese pancreatic ductal adenocarcinoma patients. Oncology Letters, 2018, 15, 9287-9292.	0.8	2
39	Increased Serotonin Signaling Contributes to the Warburg Effect in Pancreatic Tumor Cells Under Metabolic Stress and Promotes Growth of Pancreatic Tumors in Mice. Gastroenterology, 2017, 153, 277-291.e19.	0.6	193
40	Integrated expression profiling of potassium channels identifys KCNN4 as a prognostic biomarker of pancreatic cancer. Biochemical and Biophysical Research Communications, 2017, 494, 113-119.	1.0	38
41	The role of Dickkopf-1 as a potential prognostic marker in pancreatic ductal adenocarcinoma. Cell Cycle, 2017, 16, 1622-1629.	1.3	12
42	Clinicopathological, treatment, and prognosis study of 43 gastric neuroendocrine carcinomas. World Journal of Gastroenterology, 2017, 23, 516.	1.4	32
43	High Expression of FAM83B Predicts Poor Prognosis in Patients with Pancreatic Ductal Adenocarcinoma and Correlates with Cell Cycle and Cell Proliferation. Journal of Cancer, 2017, 8, 3154-3165.	1.2	33
44	Size-dependent cytotoxicity of Fe ₃ O ₄ nanoparticles induced by biphasic regulation of oxidative stress in different human hepatoma cells. International Journal of Nanomedicine, 2016, Volume 11, 3557-3570.	3.3	54
45	Analysis of long non-coding RNA expression profiles in pancreatic ductal adenocarcinoma. Scientific Reports, 2016, 6, 33535.	1.6	68
46	The clinical utility of CA125/MUC16 in pancreatic cancer: A consensus of diagnostic, prognostic and predictive updates by the Chinese Study Group for Pancreatic Cancer (CSPAC). International Journal of Oncology, 2016, 48, 900-907.	1.4	17
47	Overexpressed EDIL3 predicts poor prognosis and promotes anchorage-independent tumor growth in human pancreatic cancer. Oncotarget, 2016, 7, 4226-4240.	0.8	30
48	Elevated expression of CTHRC1 predicts unfavorable prognosis in patients with pancreatic ductal adenocarcinoma. American Journal of Cancer Research, 2016, 6, 1820-7.	1.4	12
49	Decreased LKB1 predicts poor prognosis in Pancreatic Ductal Adenocarcinoma. Scientific Reports, 2015, 5, 10575.	1.6	26
50	Pseudomonas aeruginosa Infection after Pancreatoduodenectomy: Risk Factors and Clinic Impacts. Surgical Infections, 2015, 16, 769-774.	0.7	14
51	Should a standard lymphadenectomy during pancreatoduodenectomy exclude para-aortic lymph nodes for all cases of resectable pancreatic head cancer? A consensus statement by the Chinese Study Group for Pancreatic Cancer (CSPAC). International Journal of Oncology, 2015, 47, 1512-1516.	1.4	9
52	Signet-ring cell carcinoma coexisting with adenocarcinoma arising in a choledochal cyst: report of a case. Surgery Today, 2015, 45, 1049-1052.	0.7	5
53	High expression of DDR1 is associated with the poor prognosis in Chinese patients with pancreatic ductal adenocarcinoma. Journal of Experimental and Clinical Cancer Research, 2015, 34, 88.	3.5	38
54	Downregulation of RPL15 may predict poor survival and associate with tumor progression in pancreatic ductal adenocarcinoma. Oncotarget, 2015, 6, 37028-37042.	0.8	29

#	Article	IF	CITATIONS
55	Endovascular intervention for delayed post-pancreaticoduodenectomy hemorrhage: clinical features and outcomes of transcatheter arterial embolization and covered stent placement. International Journal of Clinical and Experimental Medicine, 2015, 8, 7457-66.	1.3	11
56	High expression of WISP-1 correlates with poor prognosis in pancreatic ductal adenocarcinoma. American Journal of Translational Research (discontinued), 2015, 7, 1621-8.	0.0	13
57	Reactive Oxygen Species Are Involved in Regulating Hypocontractility of Mesenteric Artery to Norepinephrine in Cirrhotic Rats with Portal Hypertension. International Journal of Biological Sciences, 2014, 10, 386-395.	2.6	12
58	Effect of CD74 on the prognosis of patients with resectable pancreatic cancer. Hepatobiliary and Pancreatic Diseases International, 2014, 13, 81-86.	0.6	22
59	Long non-coding RNAs expressed in pancreatic ductal adenocarcinoma and IncRNA BC008363 an independent prognostic factor in PDAC. Pancreatology, 2014, 14, 385-390.	0.5	38
60	Prostacyclin decreases splanchnic vascular contractility in cirrhotic rats. Hepatobiliary and Pancreatic Diseases International, 2014, 13, 416-422.	0.6	3
61	MicroRNAs in stool samples as potential screening biomarkers for pancreatic ductal adenocarcinoma cancer. American Journal of Cancer Research, 2014, 4, 663-73.	1.4	26
62	Influence of Perineural Invasion on Survival and Recurrence in Patients with Resected Pancreatic Cancer. Asian Pacific Journal of Cancer Prevention, 2013, 14, 5133-5139.	0.5	34
63	Evaluation of surgical procedure selection based on intraoperative free portal pressure measurement in patients with portal hypertension. Hepatobiliary and Pancreatic Diseases International, 2010, 9, 269-74.	0.6	8
64	Effects of combined procedure and devascularization alone on hyperdynamics of the portal venous system in patients with portal hypertension. Frontiers of Medicine in China, 2008, 2, 244-247.	0.1	0
65	CD74 Promotes Perineural Invasion of Cancer Cells and Mediates Neuroplasticity Via the AKT/EGR-1/GDNF Axis in Pancreatic Ductal Adenocarcinoma. SSRN Electronic Journal, 0, , .	0.4	0