List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5237571/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	sgDI-tector: defective interfering viral genome bioinformatics for detection of coronavirus subgenomic RNAs. Rna, 2022, 28, 277-289.	1.6	4
2	Identification of host factors binding to dengue and Zika virus subgenomic RNA by efficient yeast three-hybrid screens of the human ORFeome. RNA Biology, 2021, 18, 732-744.	1.5	7
3	Proteomic Analysis Uncovers Measles Virus Protein C Interaction With p65–iASPP Protein Complex. Molecular and Cellular Proteomics, 2021, 20, 100049.	2.5	6
4	A chromosomeâ€level assembly of the black tiger shrimp (<i>Penaeus monodon</i>) genome facilitates the identification of growthâ€associated genes. Molecular Ecology Resources, 2021, 21, 1620-1640.	2.2	43
5	A single-shot Lassa vaccine induces long-term immunity and protects cynomolgus monkeys against heterologous strains. Science Translational Medicine, 2021, 13, .	5.8	34
6	Depletion of TAX1BP1 Amplifies Innate Immune Responses during Respiratory Syncytial Virus Infection. Journal of Virology, 2021, 95, e0091221.	1.5	6
7	A recombinant measles virus vaccine strongly reduces SHIV viremia and virus reservoir establishment in macaques. Npj Vaccines, 2021, 6, 123.	2.9	2
8	A live measles-vectored COVID-19 vaccine induces strong immunity and protection from SARS-CoV-2 challenge in mice and hamsters. Nature Communications, 2021, 12, 6277.	5.8	18
9	Frequent Homozygous Deletions of Type I Interferon Genes in Pleural Mesothelioma Confer Sensitivity to Oncolytic Measles Virus. Journal of Thoracic Oncology, 2020, 15, 827-842.	0.5	44
10	E3 Ligase ITCH Interacts with the Z Matrix Protein of Lassa and Mopeia Viruses and Is Required for the Release of Infectious Particles. Viruses, 2020, 12, 49.	1.5	12
11	Retinoic Acid Inducible Gene I and Protein Kinase R, but Not Stress Granules, Mediate the Proinflammatory Response to Yellow Fever Virus. Journal of Virology, 2020, 94, .	1.5	15
12	LGP2 binds to PACT to regulate RIG-Iâ \in " and MDA5-mediated antiviral responses. Science Signaling, 2019, 12, .	1.6	51
13	Vaccines inducing immunity to Lassa virus glycoprotein and nucleoprotein protect macaques after a single shot. Science Translational Medicine, 2019, 11, .	5.8	53
14	Uncovering Flavivirus Host Dependency Factors through a Genome-Wide Gain-of-Function Screen. Viruses, 2019, 11, 68.	1.5	21
15	Strong antigen-specific T-cell immunity induced by a recombinant human TERT measles virus vaccine and amplified by a DNA/viral vector prime boost in IFNAR/CD46 mice. Cancer Immunology, Immunotherapy, 2019, 68, 533-544.	2.0	5
16	Autophagy Promotes Infectious Particle Production of Mopeia and Lassa Viruses. Viruses, 2019, 11, 293.	1.5	12
17	Recombinant measles vaccine expressing malaria antigens induces long-term memory and protection in mice. Npj Vaccines, 2019, 4, 12.	2.9	11
18	Chemical composition, Fatty acids profile and Biological properties of Thymus capitatus (L.) Hoffmanns, essential Oil. Scientific Reports, 2019, 9, 20134.	1.6	11

#	Article	IF	CITATIONS
19	Measles-vectored vaccine approaches against viral infections: a focus on Chikungunya. Expert Review of Vaccines, 2019, 18, 393-403.	2.0	18
20	Measles-derived vaccines to prevent emerging viral diseases. Microbes and Infection, 2018, 20, 493-500.	1.0	44
21	RIC-I Recognizes the 5′ Region of Dengue and Zika Virus Genomes. Cell Reports, 2018, 24, 320-328.	2.9	94
22	Immature particles and capsid-free viral RNA produced by Yellow fever virus-infected cells stimulate plasmacytoid dendritic cells to secrete interferons. Scientific Reports, 2018, 8, 10889.	1.6	34
23	<i>DI-tector</i> : defective interfering viral genomes' detector for next-generation sequencing data. Rna, 2018, 24, 1285-1296.	1.6	33
24	Oncolytic measles virus induces tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated cytotoxicity by human myeloid and plasmacytoid dendritic cells. OncoImmunology, 2017, 6, e1261240.	2.1	25
25	Nonencapsidated 5′ Copy-Back Defective Interfering Genomes Produced by Recombinant Measles Viruses Are Recognized by RIG-I and LGP2 but Not MDA5. Journal of Virology, 2017, 91, .	1.5	36
26	Identification of a small molecule that primes the type I interferon response to cytosolic DNA. Scientific Reports, 2017, 7, 2561.	1.6	15
27	Chikungunya Virus Vaccines: Viral Vector–Based Approaches: Table 1 Journal of Infectious Diseases, 2016, 214, S500-S505.	1.9	14
28	Biosafety considerations for attenuated measles virus vectors used in virotherapy and vaccination. Human Vaccines and Immunotherapeutics, 2016, 12, 1102-1116.	1.4	35
29	Respiratory syncytial virus infection in macaques is not suppressed by intranasal sprays of pyrimidine biosynthesis inhibitors. Antiviral Research, 2016, 125, 58-62.	1.9	16
30	Comparative analysis of viral RNA signatures on different RIG-I-like receptors. ELife, 2016, 5, e11275.	2.8	80
31	Original 2-(3-Alkoxy-1 <i>H</i> -pyrazol-1-yl)pyrimidine Derivatives as Inhibitors of Human Dihydroorotate Dehydrogenase (DHODH). Journal of Medicinal Chemistry, 2015, 58, 860-877.	2.9	41
32	Original 2-(3-Alkoxy-1 <i>H</i> -pyrazol-1-yl)azines Inhibitors of Human Dihydroorotate Dehydrogenase (DHODH). Journal of Medicinal Chemistry, 2015, 58, 5579-5598.	2.9	33
33	Evidence for an intranasal immune response to human respiratory syncytial virus infection in cynomolgus macaques. Journal of General Virology, 2015, 96, 782-792.	1.3	8
34	Immunogenicity, safety, and tolerability of a recombinant measles-virus-based chikungunya vaccine: a randomised, double-blind, placebo-controlled, active-comparator, first-in-man trial. Lancet Infectious Diseases, The, 2015, 15, 519-527.	4.6	192
35	A Field-Proven Yeast Two-Hybrid Protocol Used to Identify Coronavirus–Host Protein–Protein Interactions. Methods in Molecular Biology, 2015, 1282, 213-229.	0.4	15
36	Sensitivity of human pleural mesothelioma to oncolytic measles virus depends on defects of the type I interferon response. Oncotarget, 2015, 6, 44892-44904.	0.8	37

#	Article	IF	CITATIONS
37	Large-Scale Nucleotide Optimization of Simian Immunodeficiency Virus Reduces Its Capacity To Stimulate Type I Interferon <i>In Vitro</i> . Journal of Virology, 2014, 88, 4161-4172.	1.5	21
38	Protection from SARS coronavirus conferred by live measles vaccine expressing the spike glycoprotein. Virology, 2014, 452-453, 32-41.	1.1	57
39	Yellow Fever Vaccine Attenuation Revealed: Loss of Diversity. Journal of Infectious Diseases, 2014, 209, 318-320.	1.9	7
40	High-throughput Screening for Broad-spectrum Chemical Inhibitors of RNA Viruses. Journal of Visualized Experiments, 2014, , .	0.2	12
41	Immunogenicity of a recombinant measles HIV-1 subtype C vaccine. Vaccine, 2013, 31, 6079-6086.	1.7	21
42	On Dihydroorotate Dehydrogenases and Their Inhibitors and Uses. Journal of Medicinal Chemistry, 2013, 56, 3148-3167.	2.9	175
43	A recombinant measles vaccine expressing chikungunya virus-like particles is strongly immunogenic and protects mice from lethal challenge with chikungunya virus. Vaccine, 2013, 31, 3718-3725.	1.7	132
44	Identification of RNA partners of viral proteins in infected cells. RNA Biology, 2013, 10, 943-956.	1.5	13
45	Measles Virus Vaccine–Infected Tumor Cells Induce Tumor Antigen Cross-Presentation by Human Plasmacytoid Dendritic Cells. Clinical Cancer Research, 2013, 19, 1147-1158.	3.2	100
46	Inhibition of Pyrimidine Biosynthesis Pathway Suppresses Viral Growth through Innate Immunity. PLoS Pathogens, 2013, 9, e1003678.	2.1	137
47	Sustained Autophagy Contributes to Measles Virus Infectivity. PLoS Pathogens, 2013, 9, e1003599.	2.1	96
48	Attenuated measles virus used as an oncolytic virus activates myeloid and plasmacytoid dendritic cells. Oncolmmunology, 2013, 2, e24212.	2.1	17
49	Natural Oncolytic Activity of Live-Attenuated Measles Virus against Human Lung and Colorectal Adenocarcinomas. BioMed Research International, 2013, 2013, 1-11.	0.9	36
50	Antitumor Virotherapy by Attenuated Measles Virus (MV). Biology, 2013, 2, 587-602.	1.3	16
51	The V Protein of Tioman Virus Is Incapable of Blocking Type I Interferon Signaling in Human Cells. PLoS ONE, 2013, 8, e53881.	1.1	21
52	Mapping of Chikungunya Virus Interactions with Host Proteins Identified nsP2 as a Highly Connected Viral Component. Journal of Virology, 2012, 86, 3121-3134.	1.5	98
53	Measles Vaccine Expressing the Secreted Form of West Nile Virus Envelope Glycoprotein Induces Protective Immunity in Squirrel Monkeys, a New Model of West Nile Virus Infection. Journal of Infectious Diseases, 2012, 206, 212-219.	1.9	42
54	A Human Coronavirus Responsible for the Common Cold Massively Kills Dendritic Cells but Not Monocytes. Journal of Virology, 2012, 86, 7577-7587.	1.5	117

#	Article	IF	CITATIONS
55	Toxicology, biodistribution and shedding profile of a recombinant measles vaccine vector expressing HIV-1 antigens, in cynomolgus macaques. Naunyn-Schmiedeberg's Archives of Pharmacology, 2012, 385, 1211-1225.	1.4	23
56	Comparative analysis of virus–host interactomes with a mammalian high-throughput protein complementation assay based on Gaussia princeps luciferase. Methods, 2012, 58, 349-359.	1.9	59
57	The Biased Nucleotide Composition of HIV-1 Triggers Type I Interferon Response and Correlates with Subtype D Increased Pathogenicity. PLoS ONE, 2012, 7, e33502.	1.1	29
58	Immunogenicity of a Recombinant Measles-HIV-1 Clade B Candidate Vaccine. PLoS ONE, 2012, 7, e50397.	1.1	34
59	Benchmarking a luciferase complementation assay for detecting protein complexes. Nature Methods, 2011, 8, 990-992.	9.0	141
60	Proteomic Analysis of Virus-Host Interactions in an Infectious Context Using Recombinant Viruses. Molecular and Cellular Proteomics, 2011, 10, M110.007443.	2.5	45
61	Virus-host protein interactions in RNA viruses. Microbes and Infection, 2010, 12, 1134-1143.	1.0	33
62	Enhanced Gene Silencing in Cells Cured of Persistent Virus Infection by RNA Interference. Journal of Virology, 2010, 84, 6880-6885.	1.5	3
63	New perspectives in cancer virotherapy: bringing the immune system into play. Immunotherapy, 2010, 2, 185-199.	1.0	29
64	Pediatric measles vaccine expressing a dengue tetravalent antigen elicits neutralizing antibodies against all four dengue viruses. Vaccine, 2010, 28, 6730-6739.	1.7	76
65	Differential Regulation of Type I Interferon and Epidermal Growth Factor Pathways by a Human Respirovirus Virulence Factor. PLoS Pathogens, 2009, 5, e1000587.	2.1	17
66	NRP/Optineurin Cooperates with TAX1BP1 to Potentiate the Activation of NF-κB by Human T-Lymphotropic Virus Type 1 Tax Protein. PLoS Pathogens, 2009, 5, e1000521.	2.1	71
67	Inhibition of IFN-α/β signaling by two discrete peptides within measles virus V protein that specifically bind STAT1 and STAT2. Virology, 2009, 383, 112-120.	1.1	67
68	Live attenuated measles vaccine expressing HIV-1 Gag virus like particles covered with gp160ΔV1V2 is strongly immunogenic. Virology, 2009, 388, 191-203.	1.1	42
69	Recombinant vector derived from live attenuated measles virus: Potential for flavivirus vaccines. Comparative Immunology, Microbiology and Infectious Diseases, 2008, 31, 271-291.	0.7	33
70	Measles Virus Induces Oncolysis of Mesothelioma Cells and Allows Dendritic Cells to Cross-Prime Tumor-Specific CD8 Response. Cancer Research, 2008, 68, 4882-4892.	0.4	130
71	Pediatric Measles Vaccine Expressing a Dengue Antigen Induces Durable Serotype-specific Neutralizing Antibodies to Dengue Virus. PLoS Neglected Tropical Diseases, 2007, 1, e96.	1.3	75
72	Measles virus V protein blocks Jak1-mediated phosphorylation of STAT1 to escape IFN-α/β signaling. Virology, 2007, 368, 351-362.	1.1	118

#	Article	IF	CITATIONS
73	A Paediatric Vaccination Vector Based on Live Attenuated Measles Vaccine. Therapie, 2005, 60, 227-233.	0.6	7
74	Live Measles Vaccine Expressing the Secreted Form of the West Nile Virus Envelope Glycoprotein Protects against West Nile Virus Encephalitis. Journal of Infectious Diseases, 2005, 191, 207-214.	1.9	128
75	A recombinant live attenuated measles vaccine vector primes effective HLA-A0201-restricted cytotoxic T lymphocytes and broadly neutralizing antibodies against HIV-1 conserved epitopes. Vaccine, 2005, 23, 4463-4472.	1.7	40
76	Live Attenuated Measles Vaccine as a Potential Multivalent Pediatric Vaccination Vector. Viral Immunology, 2005, 18, 317-326.	0.6	53
77	A Single Injection of Recombinant Measles Virus Vaccines Expressing Human Immunodeficiency Virus (HIV) Type 1 Clade B Envelope Glycoproteins Induces Neutralizing Antibodies and Cellular Immune Responses to HIV. Journal of Virology, 2004, 78, 146-157.	1.5	128
78	Nedd4.1-mediated ubiquitination and subsequent recruitment of Tsg101 ensure HTLV-1 Gag trafficking towards the multivesicular body pathway prior to virus budding. Journal of Cell Science, 2004, 117, 2357-2367.	1.2	133
79	A Molecularly Cloned Schwarz Strain of Measles Virus Vaccine Induces Strong Immune Responses in Macaques and Transgenic Mice. Journal of Virology, 2003, 77, 11546-11554.	1.5	131
80	Human T Cell Leukemia Virus Type I Expression in Salivary Glands of Infected Patients. Journal of Infectious Diseases, 1999, 179, 497-502.	1.9	19
81	A search for human T-cell leukemia virus type I in the lesions of patients with tropical spastic paraparesis and polymyositis. Annals of Neurology, 1995, 38, 454-460.	2.8	20