Guillaume Ducrozet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5237518/publications.pdf

Version: 2024-02-01

		471509	454955
55	986	17	30
papers	citations	h-index	g-index
61	61	61	425
01	01	01	723
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Varying ocean wave statistics emerging from a single energy spectrum in an experimental wave tank. Ocean Engineering, 2022, 246, 110375.	4.3	12
2	Relation between occurrence probability of freak waves and kurtosis/skewness in unidirectional wave trains under single-peak spectra. Ocean Engineering, 2022, 248, 110813.	4.3	6
3	Prediction and manipulation of hydrodynamic rogue waves via nonlinear spectral engineering. Physical Review Fluids, 2022, 7, .	2.5	13
4	Experimental reproduction of an extreme sea state in two wave tanks at various generation scales. , $2022,$		1
5	Breaking focused wave interaction with cylinder using HOS-OpenFOAM coupling. , 2022, , .		O
6	Galilean-transformed solitons and supercontinuum generation in dispersive media. Physica D: Nonlinear Phenomena, 2022, 439, 133342.	2.8	2
7	Statistics of rogue waves in isotropic wave fields. Journal of Fluid Mechanics, 2022, 943, .	3.4	3
8	Nonlinear dispersion relation in integrable turbulence. Scientific Reports, 2022, 12, .	3.3	3
9	Statistics of long-crested extreme waves in single and mixed sea states. Ocean Dynamics, 2021, 71, 21-42.	2.2	12
10	Nonlinear deterministic sea wave prediction using instantaneous velocity profiles. Ocean Engineering, 2021, 220, 108492.	4.3	11
11	Focused wave interactions with floating structures: a blind comparative study. Proceedings of the Institution of Civil Engineers: Engineering and Computational Mechanics, 2021, 174, 46-61.	0.4	16
12	Spectral Wave Explicit Navier-Stokes Equations for wave-structure interactions using two-phase Computational Fluid Dynamics solvers. Ocean Engineering, 2021, 221, 108513.	4.3	17
13	Transformation of envelope solitons on a bottom step. Physics of Fluids, 2021, 33, .	4.0	9
14	Predicting the occurrence of rogue waves in the presence of opposing currents with a high-order spectral method. Physical Review Fluids, 2021, 6, .	2.5	7
15	Experimental reconstruction of extreme sea waves by time reversal principle. Journal of Fluid Mechanics, 2020, 884, .	3.4	11
16	Experimental and numerical assessment of deterministic nonlinear ocean waves prediction algorithms using non-uniformly sampled wave gauges. Ocean Engineering, 2020, 212, 107659.	4.3	21
17	From modulational instability to focusing dam breaks in water waves. Physical Review Fluids, 2020, 5, .	2.5	28
18	Emergence of Peregrine solitons in integrable turbulence of deep water gravity waves. Physical Review Fluids, 2020, 5, .	2.5	15

#	Article	IF	CITATIONS
19	Nonlinear Spectral Synthesis of Soliton Gas in Deep-Water Surface Gravity Waves. Physical Review Letters, 2020, 125, 264101.	7.8	50
20	An improved Lagrangian model for the time evolution of nonlinear surface waves. Journal of Fluid Mechanics, 2019, 876, 527-552.	3.4	13
21	Comparison of wave modeling methods in CFD solvers for ocean engineering applications. Ocean Engineering, 2019, 188, 106237.	4.3	19
22	Simulation of breaking waves using the high-order spectral method with laboratory experiments: wave-breaking energy dissipation. Ocean Dynamics, 2018, 68, 65-89.	2.2	35
23	Weakly nonlinear modeling of submerged wave energy converters. Applied Ocean Research, 2018, 75, 201-222.	4.1	20
24	Phase-Resolved Reconstruction Algorithm and Deterministic Prediction of Nonlinear Ocean Waves From Spatio-Temporal Optical Measurements. , 2018, , .		3
25	Progress in Coupling Potential Wave Models and Two-Phase Solvers With the SWENSE Methodology. , 2018, , .		4
26	Generation of Regular and Irregular Waves in Navier-Stokes CFD Solvers by Matching With the Nonlinear Potential Wave Solution at the Boundaries. , 2018 , , .		6
27	Proof of the equivalence of Tanizawa–Berkvens' and Cointe–van Daalen's formulations for the time derivative of the velocity potential for non-linear potential flow solvers. Applied Ocean Research, 2017, 63, 184-199.	4.1	7
28	Propagation of 3D nonlinear waves over an elliptical mound with a High-Order Spectral method. European Journal of Mechanics, B/Fluids, 2017, 63, 9-24.	2.5	16
29	An experimental and numerical study on breather solutions for surface waves in the intermediate water depth. Ocean Engineering, 2017, 133, 262-270.	4.3	7
30	Simulation of breaking waves using the high-order spectral method with laboratory experiments: Wave-breaking onset. Ocean Modelling, 2017, 119, 94-104.	2.4	30
31	A Comparative Study of Wave Breaking Models in a High-Order Spectral Model. , 2017, , .		1
32	Applicability and limitations of highly non-linear potential flow solvers in the context of water waves. Ocean Engineering, 2017, 142, 233-244.	4.3	32
33	Influence of varying bathymetry in rogue wave occurrence within unidirectional and directional sea-states. Journal of Ocean Engineering and Marine Energy, 2017, 3, 309-324.	1.7	21
34	Modelisation non-lineaire de propagation de houle sur un fond variable tridimensionnel. Houille Blanche, 2017, 103, 42-48.	0.3	0
35	On the equivalence of unidirectional rogue waves detected in periodic simulations and reproduced in numerical wave tanks. Ocean Engineering, 2016, 117, 346-358.	4.3	17
36	HOS-ocean: Open-source solver for nonlinear waves in open ocean based on High-Order Spectral method. Computer Physics Communications, 2016, 203, 245-254.	7.5	110

#	Article	IF	Citations
37	Development and validation of a non-linear spectral model for water waves over variable depth. European Journal of Mechanics, B/Fluids, 2016, 57, 115-128.	2.5	38
38	Time-reversal of nonlinear waves: Applicability and limitations. Physical Review Fluids, 2016, 1, .	2.5	15
39	Progresses in the Development of a Weakly-Nonlinear Wave Body Interaction Model Based on the Weak-Scatterer Approximation. , 2015, , .		1
40	Development and Validation of a Highly Nonlinear Model for Wave Propagation Over a Variable Bathymetry. , $2015, \dots$		1
41	A Coupled SPH-Spectral Method for the Simulation of Wave Train Impacts on a FPSO., 2014, , .		4
42	A non-linear wave decomposition model for efficient wave–structure interaction. Part A: Formulation, validations and analysis. Journal of Computational Physics, 2014, 257, 863-883.	3.8	37
43	Comparison of Fully Nonlinear and Weakly Nonlinear Potential Flow Solvers for the Study of Wave Energy Converters Undergoing Large Amplitude Motions. , 2014, , .		5
44	An Integrated Approach for the Representation of Concrete Gravity Based Foundations for Offshore Wind Turbines. , 2013, , .		0
45	Efficient Hybrid-Spectral Model for Fully Nonlinear Numerical Wave Tank. , 2013, , .		4
46	A comparative study of two fast nonlinear freeâ€surface water wave models. International Journal for Numerical Methods in Fluids, 2012, 69, 1818-1834.	1.6	28
47	A modified High-Order Spectral method for wavemaker modeling in a numerical wave tank. European Journal of Mechanics, B/Fluids, 2012, 34, 19-34.	2.5	114
48	High-order finite difference solution for 3D nonlinear wave-structure interaction. Journal of Hydrodynamics, 2010, 22, 225-230.	3.2	18
49	TIME DOMAIN SIMULATION OF NONLINEAR WATER WAVES USING SPECTRAL METHODS. Series on Quality, Reliability and Engineering Statistics, 2010, , 129-164.	0.2	27
50	Non-Linear Initialization in Three-Dimensional High Order Spectra Deterministic Sea State Modeling. , 2010, , .		0
51	Fully Nonlinear Potential/RANSE Simulation of Wave Interaction With Ships and Marine Structures. , 2008, , .		0
52	Deterministic Reconstruction and Prediction of a Non-Linear Wave Field Using Probe Data., 2008,,.		5
53	A Non-Linear Potential Model to Predict Large-Amplitudes-Motions: Application to the SEAREV Wave Energy Converter., 2007,, 529.		12
54	3-D HOS simulations of extreme waves in open seas. Natural Hazards and Earth System Sciences, 2007, 7, 109-122.	3.6	91

#	Article	IF	CITATIONS
55	Experimental and Numerical Comparative Investigation of Pressure Fields Under Steep 2D Waves., 2006, , 579.		0