Abid Khan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5237384/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of darkness treatment on the morphology, hormone status and gene expression of developing adventitious root in apple rootstock. Plant Cell, Tissue and Organ Culture, 2022, 148, 331-346.	2.3	4
2	Different miRNAs and hormones are involved in PEG-induced inhibition of adventitious root formation in apple. Scientia Horticulturae, 2022, 303, 111206.	3.6	4
3	CaDHN3, a Pepper (Capsicum annuum L.) Dehydrin Gene Enhances the Tolerance against Salt and Drought Stresses by Reducing ROS Accumulation. International Journal of Molecular Sciences, 2021, 22, 3205.	4.1	25
4	Comparing the phosphorus use efficiency of pre-treated (organically) rock phosphate with soluble P fertilizers in maize under calcareous soils. PeerJ, 2021, 9, e11452.	2.0	8
5	CaFtsH06, A Novel Filamentous Thermosensitive Protease Gene, Is Involved in Heat, Salt, and Drought Stress Tolerance of Pepper (Capsicum annuum L.). International Journal of Molecular Sciences, 2021, 22, 6953.	4.1	5
6	Comprehensive transcriptome-based characterization of differentially expressed genes involved in carotenoid biosynthesis of different ripening stages of Capsicum. Scientia Horticulturae, 2021, 288, 110311.	3.6	11
7	Effects of exogenous methyl-jasmonate on the morphology, hormone status, and gene expression of developing lateral roots in Malus hupehensis. Scientia Horticulturae, 2021, 289, 110419.	3.6	4
8	Melatonin Mitigates the Infection of Colletotrichum gloeosporioides via Modulation of the Chitinase Gene and Antioxidant Activity in Capsicum annuum L. Antioxidants, 2021, 10, 7.	5.1	26
9	CaHsfA1d Improves Plant Thermotolerance via Regulating the Expression of Stress- and Antioxidant-Related Genes. International Journal of Molecular Sciences, 2020, 21, 8374.	4.1	15
10	CaSBP11 Participates in the Defense Response of Pepper to Phytophthora capsici through Regulating the Expression of Defense-Related Genes. International Journal of Molecular Sciences, 2020, 21, 9065.	4.1	8
11	Assessing the functional role of color-related CaMYB gene under cold stress using virus-induced gene silencing in the fruit of pepper (Capsicum annuum L.). Scientia Horticulturae, 2020, 272, 109504.	3.6	10
12	The CaChiVI2 Gene of Capsicum annuum L. Confers Resistance Against Heat Stress and Infection of Phytophthora capsici. Frontiers in Plant Science, 2020, 11, 219.	3.6	18
13	Molecular and Functional Characterization of CaNAC035, an NAC Transcription Factor From Pepper (Capsicum annuum L.). Frontiers in Plant Science, 2020, 11, 14.	3.6	39
14	CaHSP16.4, a small heat shock protein gene in pepper, is involved in heat and drought tolerance. Protoplasma, 2019, 256, 39-51.	2.1	57
15	Knockdown of CaHSP60-6 confers enhanced sensitivity to heat stress in pepper (Capsicum annuum L.). Planta, 2019, 250, 2127-2145.	3.2	29
16	Knockdown of the chitin-binding protein family gene CaChilV1 increased sensitivity to Phytophthora capsici and drought stress in pepper plants. Molecular Genetics and Genomics, 2019, 294, 1311-1326.	2.1	15
17	Modified expression of a heat shock protein gene, CaHSP22.0, results in high sensitivity to heat and salt stress in pepper (Capsicum annuum L.). Scientia Horticulturae, 2019, 249, 364-373.	3.6	14
18	Heat Shock Proteins: Dynamic Biomolecules to Counter Plant Biotic and Abiotic Stresses. International Journal of Molecular Sciences, 2019, 20, 5321.	4.1	260

Abid Khan

#	Article	IF	CITATIONS
19	A Novel Transcription Factor CaSBP12 Gene Negatively Regulates the Defense Response against Phytophthora capsici in Pepper (Capsicum annuum L.). International Journal of Molecular Sciences, 2019, 20, 48.	4.1	29
20	Genome-wide analysis of dirigent gene family in pepper (Capsicum annuum L.) and characterization of CaDIR7 in biotic and abiotic stresses. Scientific Reports, 2018, 8, 5500.	3.3	51
21	Variation in leaf color and combine effect of pigments on physiology and resistance to whitefly of pepper (Capsicum annuum L.). Scientia Horticulturae, 2018, 229, 215-225.	3.6	11
22	CanTF, a Novel Transcription Factor in Pepper, Is Involved in Resistance to Phytophthora capsici as well as Abiotic Stresses. Plant Molecular Biology Reporter, 2018, 36, 776-789.	1.8	4
23	Genome-wide identification of the AP2/ERF transcription factor family in pepper (<i>Capsicum) Tj ETQq1 1 0.784</i>	314 rgBT / 2.0	Overlock 10
24	Classification and Genome-Wide Analysis of Chitin-Binding Proteins Gene Family in Pepper (Capsicum) Tj ETQq0 G Applications. International Journal of Molecular Sciences, 2018, 19, 2216.) 0 rgBT /0 4.1	Overlock 10 7 35
25	Genome-Wide Identification, Expression Diversication of Dehydrin Gene Family and Characterization of CaDHN3 in Pepper (Capsicum annuum L.). PLoS ONE, 2016, 11, e0161073.	2.5	35
26	A New Ethylene-Responsive Factor CaPTI1 Gene of Pepper (Capsicum annuum L.) Involved in the Regulation of Defense Response to Phytophthora capsici. Frontiers in Plant Science, 2016, 6, 1217.	3.6	51
27	Genome-Wide Identification and Analysis of the SBP-Box Family Genes under Phytophthora capsici Stress in Pepper (Capsicum annuum L.). Frontiers in Plant Science, 2016, 7, 504.	3.6	73
28	Effect of ethyl methyl sulfonate concentration and different treatment conditions on germination and seedling growth of the cucumber cultivar Chinese long (9930). Genetics and Molecular Research, 2015, 14, 2440-2449.	0.2	18