
Stefano Sainas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5237/publications.pdf Version: 2024-02-01

STEEANO SAINAS

#	Article	IF	CITATIONS
1	A New NF-κB Inhibitor, MEDS-23, Reduces the Severity of Adverse Post-Ischemic Stroke Outcomes in Rats. Brain Sciences, 2022, 12, 35.	2.3	10
2	New aldo-keto reductase 1C3 (AKR1C3) inhibitors based on the hydroxytriazole scaffold. European Journal of Medicinal Chemistry, 2022, 237, 114366.	5.5	7
3	Identification of Human Dihydroorotate Dehydrogenase Inhibitor by a Pharmacophore-Based Virtual Screening Study. Molecules, 2022, 27, 3660.	3.8	3
4	Dihydroorotate dehydrogenase inhibition reveals metabolic vulnerability in chronic myeloid leukemia. Cell Death and Disease, 2022, 13, .	6.3	1
5	Hydroxyazoles as acid isosteres and their drug design applications—Part 2: Bicyclic systems. Advances in Heterocyclic Chemistry, 2021, , 273-311.	1.7	9
6	Hydroxyazoles as acid isosteres and their drug design applications—Part 1: Monocyclic systems. Advances in Heterocyclic Chemistry, 2021, 134, 185-272.	1.7	10
7	The Synergism between DHODH Inhibitors and Dipyridamole Leads to Metabolic Lethality in Acute Myeloid Leukemia. Cancers, 2021, 13, 1003.	3.7	21
8	Targeting Acute Myelogenous Leukemia Using Potent Human Dihydroorotate Dehydrogenase Inhibitors Based on the 2-Hydroxypyrazolo[1,5- <i>a</i>]pyridine Scaffold: SAR of the Biphenyl Moiety. Journal of Medicinal Chemistry, 2021, 64, 5404-5428.	6.4	19
9	Effective deploying of a novel DHODH inhibitor against herpes simplex type 1 and type 2 replication. Antiviral Research, 2021, 189, 105057.	4.1	21
10	The New Generation hDHODH Inhibitor MEDS433 Hinders the In Vitro Replication of SARS-CoV-2 and Other Human Coronaviruses. Microorganisms, 2021, 9, 1731.	3.6	16
11	AML-201: Synthetic Lethality in Acute Myeloid Leukemia: A Focus on Dihydroorotate Dehydrogenase Inhibitors. Clinical Lymphoma, Myeloma and Leukemia, 2020, 20, S190.	0.4	0
12	Regioselective Nâ€Alkylation of Ethyl 4â€Benzyloxyâ€1,2,3â€ŧriazolecarboxylate: A Useful Tool for the Synthesis of Carboxylic Acid Bioisosteres. Journal of Heterocyclic Chemistry, 2019, 56, 501-519.	2.6	14
13	Dihydroorotate dehydrogenase inhibitors in anti-infective drug research. European Journal of Medicinal Chemistry, 2019, 183, 111681.	5.5	56
14	Use of the 4-Hydroxytriazole Moiety as a Bioisosteric Tool in the Development of Ionotropic Glutamate Receptor Ligands. Journal of Medicinal Chemistry, 2019, 62, 4467-4482.	6.4	18
15	Hydroxyazole scaffold-based Plasmodium falciparum dihydroorotate dehydrogenase inhibitors: Synthesis, biological evaluation and X-ray structural studies. European Journal of Medicinal Chemistry, 2019, 163, 266-280.	5.5	23
16	Meds433, a New Dihydroorotate Dehydrogenase Inhibitor, Induces Apoptosis and Differentiation in Acute Myeloid Leukemia. Blood, 2019, 134, 3942-3942.	1.4	0
17	N-Acetyl-3-aminopyrazoles block the non-canonical NF-kB cascade by selectively inhibiting NIK. MedChemComm, 2018, 9, 963-968.	3.4	27
18	Targeting Human Onchocerciasis: Recent Advances Beyond Ivermectin. Annual Reports in Medicinal Chemistry, 2018, 51, 1-38.	0.9	14

STEFANO SAINAS

#	Article	IF	CITATIONS
19	Targeting Myeloid Differentiation Using Potent 2-Hydroxypyrazolo[1,5- <i>a</i>]pyridine Scaffold-Based Human Dihydroorotate Dehydrogenase Inhibitors. Journal of Medicinal Chemistry, 2018, 61, 6034-6055.	6.4	57
20	Use of human Dihydroorotate Dehydrogenase (hDHODH) Inhibitors in Autoimmune Diseases and New Perspectives in Cancer Therapy. Recent Patents on Anti-Cancer Drug Discovery, 2018, 13, 86-105.	1.6	61
21	DHODH inhibitors and leukemia: an emergent interest for new myeloid differentiation agents. Drugs of the Future, 2018, 43, 0823.	0.1	7
22	Design, synthesis, biological evaluation and X-ray structural studies of potent human dihydroorotate dehydrogenase inhibitors based on hydroxylated azole scaffolds. European Journal of Medicinal Chemistry, 2017, 129, 287-302.	5.5	46
23	4-Hydroxy-N-[3,5-bis(trifluoromethyl)phenyl]-1,2,5-thiadiazole-3-carboxamide: a novel inhibitor of the canonical NF-lºB cascade. MedChemComm, 2017, 8, 1850-1855.	3.4	23
24	Substituted 4-hydroxy-1,2,3-triazoles: synthesis, characterization and first drug design applications through bioisosteric modulation and scaffold hopping approaches. MedChemComm, 2015, 6, 1285-1292.	3.4	40