Stefano Sainas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5237/publications.pdf

Version: 2024-02-01

623734 677142 24 504 14 22 h-index citations g-index papers 27 27 27 590 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Use of human Dihydroorotate Dehydrogenase (hDHODH) Inhibitors in Autoimmune Diseases and New Perspectives in Cancer Therapy. Recent Patents on Anti-Cancer Drug Discovery, 2018, 13, 86-105.	1.6	61
2	Targeting Myeloid Differentiation Using Potent 2-Hydroxypyrazolo[1,5- <i>a</i>)pyridine Scaffold-Based Human Dihydroorotate Dehydrogenase Inhibitors. Journal of Medicinal Chemistry, 2018, 61, 6034-6055.	6.4	57
3	Dihydroorotate dehydrogenase inhibitors in anti-infective drug research. European Journal of Medicinal Chemistry, 2019, 183, 111681.	5.5	56
4	Design, synthesis, biological evaluation and X-ray structural studies of potent human dihydroorotate dehydrogenase inhibitors based on hydroxylated azole scaffolds. European Journal of Medicinal Chemistry, 2017, 129, 287-302.	5.5	46
5	Substituted 4-hydroxy-1,2,3-triazoles: synthesis, characterization and first drug design applications through bioisosteric modulation and scaffold hopping approaches. MedChemComm, 2015, 6, 1285-1292.	3.4	40
6	N-Acetyl-3-aminopyrazoles block the non-canonical NF-kB cascade by selectively inhibiting NIK. MedChemComm, 2018, 9, 963-968.	3.4	27
7	4-Hydroxy-N-[3,5-bis(trifluoromethyl)phenyl]-1,2,5-thiadiazole-3-carboxamide: a novel inhibitor of the canonical NF-l ^o B cascade. MedChemComm, 2017, 8, 1850-1855.	3.4	23
8	Hydroxyazole scaffold-based Plasmodium falciparum dihydroorotate dehydrogenase inhibitors: Synthesis, biological evaluation and X-ray structural studies. European Journal of Medicinal Chemistry, 2019, 163, 266-280.	5.5	23
9	The Synergism between DHODH Inhibitors and Dipyridamole Leads to Metabolic Lethality in Acute Myeloid Leukemia. Cancers, 2021, 13, 1003.	3.7	21
10	Effective deploying of a novel DHODH inhibitor against herpes simplex type 1 and type 2 replication. Antiviral Research, 2021, 189, 105057.	4.1	21
11	Targeting Acute Myelogenous Leukemia Using Potent Human Dihydroorotate Dehydrogenase Inhibitors Based on the 2-Hydroxypyrazolo[1,5- <i>a</i>)pyridine Scaffold: SAR of the Biphenyl Moiety. Journal of Medicinal Chemistry, 2021, 64, 5404-5428.	6.4	19
12	Use of the 4-Hydroxytriazole Moiety as a Bioisosteric Tool in the Development of Ionotropic Glutamate Receptor Ligands. Journal of Medicinal Chemistry, 2019, 62, 4467-4482.	6.4	18
13	The New Generation hDHODH Inhibitor MEDS433 Hinders the In Vitro Replication of SARS-CoV-2 and Other Human Coronaviruses. Microorganisms, 2021, 9, 1731.	3.6	16
14	Targeting Human Onchocerciasis: Recent Advances Beyond Ivermectin. Annual Reports in Medicinal Chemistry, 2018, 51, 1-38.	0.9	14
15	Regioselective Nâ€Alkylation of Ethyl 4â€Benzyloxyâ€1,2,3â€triazolecarboxylate: A Useful Tool for the Synthesis of Carboxylic Acid Bioisosteres. Journal of Heterocyclic Chemistry, 2019, 56, 501-519.	2.6	14
16	Hydroxyazoles as acid isosteres and their drug design applicationsâ€"Part 1: Monocyclic systems. Advances in Heterocyclic Chemistry, 2021, 134, 185-272.	1.7	10
17	A New NF-κB Inhibitor, MEDS-23, Reduces the Severity of Adverse Post-Ischemic Stroke Outcomes in Rats. Brain Sciences, 2022, 12, 35.	2.3	10
18	Hydroxyazoles as acid isosteres and their drug design applicationsâ€"Part 2: Bicyclic systems. Advances in Heterocyclic Chemistry, 2021, , 273-311.	1.7	9

#	Article	IF	CITATION
19	DHODH inhibitors and leukemia: an emergent interest for new myeloid differentiation agents. Drugs of the Future, 2018, 43, 0823.	0.1	7
20	New aldo-keto reductase 1C3 (AKR1C3) inhibitors based on the hydroxytriazole scaffold. European Journal of Medicinal Chemistry, 2022, 237, 114366.	5 . 5	7
21	Identification of Human Dihydroorotate Dehydrogenase Inhibitor by a Pharmacophore-Based Virtual Screening Study. Molecules, 2022, 27, 3660.	3.8	3
22	Dihydroorotate dehydrogenase inhibition reveals metabolic vulnerability in chronic myeloid leukemia. Cell Death and Disease, 2022, 13, .	6.3	1
23	AML-201: Synthetic Lethality in Acute Myeloid Leukemia: A Focus on Dihydroorotate Dehydrogenase Inhibitors. Clinical Lymphoma, Myeloma and Leukemia, 2020, 20, S190.	0.4	0
24	Meds433, a New Dihydroorotate Dehydrogenase Inhibitor, Induces Apoptosis and Differentiation in Acute Myeloid Leukemia. Blood, 2019, 134, 3942-3942.	1.4	0