List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5236607/publications.pdf Version: 2024-02-01

ΙΔΝΟΙΔΝ SHU

#	Article	IF	CITATIONS
1	High-throughput screening of carbon-supported single metal atom catalysts for oxygen reduction reaction. Nano Research, 2022, 15, 1054-1060.	5.8	34
2	Anisotropic magnetic liquid metal film for wearable wireless electromagnetic sensing and smart electromagnetic interference shielding. Nano Energy, 2022, 92, 106700.	8.2	108
3	Catalysis stability enhancement of Fe/Co dual-atom site via phosphorus coordination for proton exchange membrane fuel cell. Nano Research, 2022, 15, 3082-3089.	5.8	31
4	Necklaceâ€Like Sn@C Fiber Selfâ€Supporting Electrode for Highâ€Performance Sodiumâ€Ion Battery. Energy Technology, 2022, 10, .	1.8	7
5	Spatial porosity design of Fe–N–C catalysts for high power density PEM fuel cells and detection of water saturation of the catalyst layer by a microwave method. Journal of Materials Chemistry A, 2022, 10, 7764-7772.	5.2	11
6	Environmentally Tough and Stretchable MXene Organohydrogel with Exceptionally Enhanced Electromagnetic Interference Shielding Performances. Nano-Micro Letters, 2022, 14, 77.	14.4	91
7	Exploring Durable Single-Atom Catalysts for Proton Exchange Membrane Fuel Cells. ACS Energy Letters, 2022, 7, 1696-1705.	8.8	50
8	Phosphated IrMo bimetallic cluster for efficient hydrogen evolution reaction. EScience, 2022, 2, 304-310.	25.0	171
9	lron atom–cluster interactions increase activity and improve durability in Fe–N–C fuel cells. Nature Communications, 2022, 13, .	5.8	159
10	Non-classical hydrogen storage mechanisms other than chemisorption and physisorption. Applied Physics Reviews, 2022, 9, .	5.5	16
11	Effect of Zn atom in Fe-N-C catalysts for electro-catalytic reactions: theoretical considerations. Nano Research, 2021, 14, 611-619.	5.8	52
12	Hollow double-shell structured Void@SiO2@Co-C composite for broadband electromagnetic wave absorption. Chemical Engineering Journal, 2021, 417, 128093.	6.6	31
13	Carbon Fibers Embedded with Aligned Magnetic Particles for Efficient Electromagnetic Energy Absorption and Conversion. ACS Applied Materials & Interfaces, 2021, 13, 5266-5274.	4.0	21
14	Nanoscale Pt ₅ Ni ₃₆ design and synthesis for efficient oxygen reduction reaction in proton exchange membrane fuel cells. Journal of Materials Chemistry A, 2021, 9, 21051-21056.	5.2	12
15	Hydrogen storage in incompletely etched multilayer Ti2CTx at room temperature. Nature Nanotechnology, 2021, 16, 331-336.	15.6	145
16	Off/on switchable smart electromagnetic interference shielding aerogel. Matter, 2021, 4, 1735-1747.	5.0	114
17	Molybdenum-based materials for electrocatalytic nitrogen reduction reaction. Cell Reports Physical Science, 2021, 2, 100447.	2.8	30
18	Hydrogen Passivation of M–N–C (M = Fe, Co) Catalysts for Storage Stability and ORR Activity Improvements. Advanced Materials, 2021, 33, e2103600.	11.1	81

#	Article	IF	CITATIONS
19	Hydrogen Passivation of M–N–C (M = Fe, Co) Catalysts for Storage Stability and ORR Activity Improvements (Adv. Mater. 38/2021). Advanced Materials, 2021, 33, 2170300.	11.1	17
20	lodine cation bridged graphene sheets with strengthened interface combination for electromagnetic wave absorption. Carbon, 2021, 183, 100-107.	5.4	34
21	0D-1D-2D multidimensionally assembled Co9S8/CNTs/MoS2 composites for ultralight and broadband electromagnetic wave absorption. Chemical Engineering Journal, 2021, 423, 130132.	6.6	64
22	Highly Accessible Atomically Dispersed Feâ€N <i>_x</i> Sites Electrocatalyst for Protonâ€Exchange Membrane Fuel Cell. Advanced Science, 2021, 8, 2002249.	5.6	67
23	Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science, 2021, 374, 459-464.	6.0	343
24	High-capacity K-storage operational to â^'40â€ [~] °C by using RGO as a model anode material. Nano Energy, 2020, 67, 104248.	8.2	33
25	Performance improvement of lithium-ion battery by pulse current. Journal of Energy Chemistry, 2020, 46, 208-214.	7.1	59
26	Stability of PGM-free fuel cell catalysts: Degradation mechanisms and mitigation strategies. Progress in Natural Science: Materials International, 2020, 30, 721-731.	1.8	34
27	Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage. Nature Communications, 2020, 11, 6160.	5.8	183
28	Molecule template method for precise synthesis of Mo-based alloy clusters and electrocatalytic nitrogen reduction on partially reduced PtMo alloy oxide cluster. Nano Energy, 2020, 78, 105211.	8.2	38
29	Density Functional Theory Calculation of Zn and N Codoped Graphene for Oxygen Reduction and Evolution Reactions. Advanced Theory and Simulations, 2020, 3, 2000054.	1.3	11
30	Recent Advances in Phosphorusâ€Coordinated Transition Metal Singleâ€Atom Catalysts for Oxygen Reduction Reaction. ChemNanoMat, 2020, 6, 1601-1610.	1.5	14
31	Synergy between metallic components of MoNi alloy for catalyzing highly efficient hydrogen storage of MgH2. Nano Research, 2020, 13, 2063-2071.	5.8	64
32	Carbon black-supported FM–N–C (FM = Fe, Co, and Ni) single-atom catalysts synthesized by the self-catalysis of oxygen-coordinated ferrous metal atoms. Journal of Materials Chemistry A, 2020, 8, 13166-13172.	5.2	27
33	Nanocasting SiO2 into metal–organic frameworks imparts dual protection to high-loading Fe single-atom electrocatalysts. Nature Communications, 2020, 11, 2831.	5.8	321
34	Temperature Impacts on Oxygen Reduction Reaction Measured by the Rotating Disk Electrode Technique. Journal of Physical Chemistry C, 2020, 124, 3069-3079.	1.5	32
35	Boosting electrocatalytic water splitting via metal-metalloid combined modulation in quaternary Ni-Fe-P-B amorphous compound. Nano Research, 2020, 13, 447-454.	5.8	77
36	Rare Earth Single-Atom Catalysts for Nitrogen and Carbon Dioxide Reduction. ACS Nano, 2020, 14, 1093-1101.	7.3	198

#	Article	IF	CITATIONS
37	Sequential Synthesis and Activeâ€5ite Coordination Principle of Precious Metal Singleâ€Atom Catalysts for Oxygen Reduction Reaction and PEM Fuel Cells. Advanced Energy Materials, 2020, 10, 2000689.	10.2	92
38	Effect of Catalyst Layer Hydrophobicity on Feâ^'Nâ^'C Proton Exchange Membrane Fuel Cells. ChemElectroChem, 2020, 7, 1775-1780.	1.7	12
39	Cathode Local Curvature Affects Lithium Peroxide Growth in Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2019, 11, 35264-35269.	4.0	9
40	Fe-N-C catalysts for PEMFC: Progress towards the commercial application under DOE reference. Journal of Energy Chemistry, 2019, 39, 77-87.	7.1	83
41	Insights into the role of active site density in the fuel cell performance of Co-N-C catalysts. Applied Catalysis B: Environmental, 2019, 256, 117849.	10.8	104
42	Alginate-templated synthesis of CoFe/carbon fiber composite and theÂeffect of hierarchically porous structure on electromagnetic waveÂabsorption performance. Carbon, 2019, 151, 36-45.	5.4	161
43	MOF-Derived Carbon Networks with Atomically Dispersed Fe–N _{<i>x</i>} Sites for Oxygen Reduction Reaction Catalysis in Acidic Media. , 2019, 1, 37-43.		40
44	Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nature Catalysis, 2019, 2, 259-268.	16.1	958
45	Preparation of Fe–N–C catalysts with FeN _x (<i>x</i> = 1, 3, 4) active sites and comparison of their activities for the oxygen reduction reaction and performances in proton exchange membrane fuel cells. Journal of Materials Chemistry A, 2019, 7, 26147-26153.	5.2	172
46	A layered double hydroxide-derived exchange spring magnet array grown on graphene and its application as an ultrathin electromagnetic wave absorbing material. Journal of Materials Chemistry C, 2019, 7, 12270-12277.	2.7	42
47	Multifunctional Organic–Inorganic Hybrid Aerogel for Self leaning, Heatâ€Insulating, and Highly Efficient Microwave Absorbing Material. Advanced Functional Materials, 2019, 29, 1807624.	7.8	458
48	Carbonâ€Based Metalâ€Free ORR Electrocatalysts for Fuel Cells: Past, Present, and Future. Advanced Materials, 2019, 31, e1804799.	11.1	649
49	Synthesis and Active Site Identification of Feâ^'Nâ^'C Singleâ€Atom Catalysts for the Oxygen Reduction Reaction. ChemElectroChem, 2019, 6, 304-315.	1.7	65
50	Ancient Chemistry "Pharaoh's Snakes―for Efficient Fe-/N-Doped Carbon Electrocatalysts. ACS Applied Materials & Interfaces, 2018, 10, 10778-10785.	4.0	64
51	Electrocatalytically Active Hollow Carbon Nanospheres Derived from PSâ€ <i>b</i> â€₽4VP Micelles. Particle and Particle Systems Characterization, 2018, 35, 1700404.	1.2	9
52	The Solidâ€Phase Synthesis of an Feâ€Nâ€C Electrocatalyst for Highâ€Power Protonâ€Exchange Membrane Fuel Cells. Angewandte Chemie, 2018, 130, 1218-1222.	1.6	57
53	A rationally assembled graphene nanoribbon/graphene framework for high volumetric energy and power density Li-ion batteries. Nanoscale, 2018, 10, 7676-7684.	2.8	18
54	The Solidâ€Phase Synthesis of an Feâ€N Electrocatalyst for Highâ€Power Protonâ€Exchange Membrane Fuel Cells. Angewandte Chemie - International Edition, 2018, 57, 1204-1208.	7.2	293

#	Article	IF	CITATIONS
55	Singleâ€Atom to Singleâ€Atom Grafting of Pt ₁ onto FeN ₄ Center: Pt ₁ @FeNC Multifunctional Electrocatalyst with Significantly Enhanced Properties. Advanced Energy Materials, 2018, 8, 1701345.	10.2	371
56	Selfâ€Adaptive Electrode with SWCNT Bundles as Elastic Substrate for Highâ€Rate and Longâ€Cycle‣ife Lithium/Sodium Ion Batteries. Small, 2018, 14, e1802913.	5.2	32
57	Zigzag carbon as efficient and stable oxygen reduction electrocatalyst for proton exchange membrane fuel cells. Nature Communications, 2018, 9, 3819.	5.8	202
58	Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6626-6631.	3.3	500
59	Oneâ€Pot Synthesis of Functionalized Holey Graphene/Sulfur Composite for Lithium–Sulfur Batteries. Advanced Materials Interfaces, 2017, 4, 1700783.	1.9	27
60	Magnetically Aligned Co–C/MWCNTs Composite Derived from MWCNT-Interconnected Zeolitic Imidazolate Frameworks for a Lightweight and Highly Efficient Electromagnetic Wave Absorber. ACS Applied Materials & Interfaces, 2017, 9, 30850-30861.	4.0	282
61	Porous CNTs/Co Composite Derived from Zeolitic Imidazolate Framework: A Lightweight, Ultrathin, and Highly Efficient Electromagnetic Wave Absorber. ACS Applied Materials & Interfaces, 2016, 8, 34686-34698.	4.0	427
62	Electrocatalytic performances of g-C3N4-LaNiO3 composite as bi-functional catalysts for lithium-oxygen batteries. Scientific Reports, 2016, 6, 24314.	1.6	56
63	Nitrogen-Doped Holey Graphene for High-Performance Rechargeable Li–O ₂ Batteries. ACS Energy Letters, 2016, 1, 260-265.	8.8	116
64	Enhanced rate performance of LiNi0.5Mn1.5O4 fibers synthesized by electrospinning. Nano Energy, 2015, 15, 616-624.	8.2	27
65	N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells. Science Advances, 2015, 1, e1400129.	4.7	583
66	Highly efficient nonprecious metal catalyst prepared with metal–organic framework in a continuous carbon nanofibrous network. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10629-10634.	3.3	359
67	Nitrogenâ€Đoped Holey Graphitic Carbon from 2D Covalent Organic Polymers for Oxygen Reduction. Advanced Materials, 2014, 26, 3315-3320.	11.1	292
68	Dealloyed PtCo hollow nanowires with ultrathin wall thicknesses and their catalytic durability for the oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 16175-16180.	5.2	26
69	Vertically Aligned N-Doped Coral-like Carbon Fiber Arrays as Efficient Air Electrodes for High-Performance Nonaqueous Li–O ₂ Batteries. ACS Nano, 2014, 8, 3015-3022.	7.3	242
70	Oxygen Reduction: Nitrogenâ€Doped Holey Graphitic Carbon from 2D Covalent Organic Polymers for Oxygen Reduction (Adv. Mater. 20/2014). Advanced Materials, 2014, 26, 3356-3356.	11.1	6
71	Sulfur–Graphene Nanostructured Cathodes <i>via</i> Ball-Milling for High-Performance Lithium–Sulfur Batteries. ACS Nano, 2014, 8, 10920-10930.	7.3	213
72	New Approaches to Non-PGM Catalysts through Rational Design. ECS Transactions, 2011, 30, 97-104.	0.3	6

#	Article	IF	CITATIONS
73	Platinum Nanowires Produced by Electrospinning. Nano Letters, 2009, 9, 1307-1314.	4.5	112