Manuel David Abad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5236605/publications.pdf Version: 2024-02-01

MANUEL DAVID ARAD

#	Article	IF	CITATIONS
1	Nb–C thin films prepared by DC-MS and HiPIMS: Synthesis, structure, and tribomechanical properties. Surface and Coatings Technology, 2021, 422, 127569.	2.2	5
2	Mechanical Performance of 3D-Printed Biocompatible Polycarbonate for Biomechanical Applications. Polymers, 2021, 13, 3669.	2.0	11
3	Tribological performance of Nb-C thin films prepared by DC and HiPIMS. Materials Letters, 2020, 277, 128334.	1.3	6
4	An Investigation of the Tribological Behavior of Hf-Based Bulk Metallic Glass and Crystalline Alloys. Journal of Tribology, 2020, 142, .	1.0	9
5	A study of deformation and strain induced in bulk by the oxide layers formation on a Fe-Cr-Al alloy in high-temperature liquid Pb-Bi eutectic. Acta Materialia, 2018, 151, 301-309.	3.8	25
6	Micro mechanical testing of candidate structural alloys for Gen-IV nuclear reactors. Nuclear Materials and Energy, 2018, 16, 34-45.	0.6	27
7	Interface dominated mechanical properties of ultra-fine grained and nanoporous Au at elevated temperatures. Acta Materialia, 2016, 121, 104-116.	3.8	32
8	Oxide scale formation on 316L and FeCrAl steels exposed to oxygen controlled static LBE at temperatures up to 800 ŰC. Solar Energy Materials and Solar Cells, 2016, 144, 235-246.	3.0	49
9	A high temperature mechanical study on PH 13-8 Mo maraging steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 651, 574-582.	2.6	17
10	Small-Scale Mechanical Testing on Proton Beam-Irradiated 304 SS from Room Temperature to Reactor Operation Temperature. Jom, 2015, 67, 2959-2964.	0.9	19
11	Elevated temperature mechanical properties of novel ultra-fine grained Cu–Nb composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 625, 296-302.	2.6	25
12	Microstructure and mechanical properties of CuxNb1â°'x alloys prepared by ball milling and high pressure torsion compacting. Journal of Alloys and Compounds, 2015, 630, 117-125.	2.8	23
13	Nanoindentation of chemical-vapor deposited Al2O3 hard coatings at elevated temperatures. Thin Solid Films, 2015, 578, 20-24.	0.8	31
14	Tribocorrosion behavior of TiBxCy/a-C nanocomposite coating in strong oxidant disinfectant solutions. Surface and Coatings Technology, 2015, 263, 78-85.	2.2	13
15	A high temperature nanoindentation study of Al–Cu wrought alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 644, 218-224.	2.6	17
16	Fabrication and thermo-mechanical behavior of ultra-fine porous copper. Journal of Materials Science, 2015, 50, 634-643.	1.7	36
17	Evaluation of the Mechanical Properties of Naturally Grown Multilayered Oxides Formed on HCM12A Using Small Scale Mechanical Testing. Oxidation of Metals, 2015, 84, 211-231.	1.0	19
18	Localized mechanical property assessment of SiC/SiC composite materials. Composites Part A: Applied Science and Manufacturing, 2015, 70, 93-101.	3.8	68

MANUEL DAVID ABAD

#	Article	IF	CITATIONS
19	Characterization of ion beam irradiated 304 stainless steel utilizing nanoindentation and Laue microdiffraction. Journal of Nuclear Materials, 2015, 458, 70-76.	1.3	61
20	Tribological comparison of different C-based coatings in lubricated and unlubricated conditions. Surface and Coatings Technology, 2014, 257, 278-285.	2.2	8
21	Mechanical and phase stability of TiBC coatings up to 1000 °C. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, .	0.9	6
22	Tribological properties of surface-modified Pd nanoparticles for electrical contacts. Wear, 2013, 297, 943-951.	1.5	31
23	Comparative wear behavior studies of coated inserts during milling of NiCrMoV steel. Tribology International, 2012, 53, 115-123.	3.0	12
24	Phase composition and tribomechanical properties of Ti–B–C nanocomposite coatings prepared by magnetron sputtering. Journal Physics D: Applied Physics, 2012, 45, 375401.	1.3	21
25	Influence of silver content on the tribomechanical behavior on Ag-TiCN bioactive coatings. Surface and Coatings Technology, 2012, 206, 2192-2198.	2.2	46
26	Electrical properties and applications of carbon based nanocomposite materials: An overview. Surface and Coatings Technology, 2011, 206, 727-733.	2.2	71
27	Identification of the wear mechanism on WC/C nanostructured coatings. Surface and Coatings Technology, 2011, 206, 1913-1920.	2.2	43
28	Identification of Ternary Phases in TiBC/a Nanocomposite Thin Films: Influence on the Electrical and Optical Properties. Plasma Processes and Polymers, 2011, 8, 579-588.	1.6	10
29	Surface-modified Pd and Au nanoparticles for anti-wear applications. Tribology International, 2011, 44, 720-726.	3.0	61
30	Wear behavior of some cutting tool materials in hard turning of HSS. Tribology International, 2011, 44, 1174-1181.	3.0	57
31	Influence of carbon chemical bonding on the tribological behavior of sputtered nanocomposite TiBC/a-C coatings. Thin Solid Films, 2010, 518, 5546-5552.	0.8	35
32	Tailored synthesis of nanostructured WC/a-C coatings by dual magnetron sputtering. Surface and Coatings Technology, 2010, 204, 3490-3500.	2.2	110
33	Extended X-ray absorption fine structure (EXAFS) investigations of Ti bonding environment in sputter-deposited nanocomposite TiBC/a-C thin films. IOP Conference Series: Materials Science and Engineering, 2010, 12, 012012.	0.3	4
34	WC/a-C nanocomposite thin films: Optical and electrical properties. Journal of Applied Physics, 2009, 105, 033510.	1.1	28
35	Bonding Structure and Mechanical Properties of Tiâ€B Coatings. Plasma Processes and Polymers, 2009, 6, S107.	1.6	18
36	Thermal Evolution of WC/C Nanostructured Coatings by Raman and In Situ XRD Analysis. Plasma Processes and Polymers, 2009, 6, S444.	1.6	51

#	Article	IF	CITATIONS
37	Metal carbide/amorphous C-based nanocomposite coatings for tribological applications. Surface and Coatings Technology, 2009, 204, 947-954.	2.2	74
38	Catalytic growth of carbon nanotubes on stainless steel: Characterization and frictional properties. Diamond and Related Materials, 2008, 17, 1853-1857.	1.8	31