Prospero Di Pierro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/523627/publications.pdf Version: 2024-02-01

PROSDERO DI DIERRO

#	Article	IF	CITATIONS
1	Exploiting Potential Biotechnological Applications of Poly-γ-glutamic Acid Low Molecular Weight Fractions Obtained by Membrane-Based Ultra-Filtration. Polymers, 2022, 14, 1190.	2.0	5
2	Bio-Based Materials for Packaging. International Journal of Molecular Sciences, 2022, 23, 3611.	1.8	8
3	Formulation of New Media from Dairy and Brewery Wastes for a Sustainable Production of DHA-Rich Oil by Aurantiochytrium mangrovei. Marine Drugs, 2022, 20, 39.	2.2	13
4	Development of Functional Pizza Base Enriched with Jujube (Ziziphus jujuba) Powder. Foods, 2022, 11, 1458.	1.9	7
5	Edible Coating from Enzymatically Reticulated Whey Protein-Pectin to Improve Shelf Life of Roasted Peanuts. Coatings, 2021, 11, 329.	1.2	19
6	Potential use of glycerol- and/or spermidine-plasticized secalin films as leaf surface coatings for sustainable plant disease management. Journal of Cleaner Production, 2021, 328, 129461.	4.6	4
7	Design of an Active Edible Coating Based on Sodium Caseinate, Chitosan and Oregano Essential Oil Reinforced with Silica Particles and Its Application on Panela Cheese. Coatings, 2021, 11, 1212.	1.2	11
8	Rheological and Antimicrobial Properties of Chitosan and Quinoa Protein Filmogenic Suspensions with Thyme and Rosemary Essential Oils. Foods, 2020, 9, 1616.	1.9	6
9	Biopolymers as Food Packaging Materials. International Journal of Molecular Sciences, 2020, 21, 4942.	1.8	38
10	Glutamic Acid as Repeating Building Block for Bio-Based Films. Polymers, 2020, 12, 1613.	2.0	6
11	Valorisation of Posidonia oceanica Sea Balls (Egagropili) as a Potential Source of Reinforcement Agents in Protein-Based Biocomposites. Polymers, 2020, 12, 2788.	2.0	12
12	Black Edible Films from Protein-Containing Defatted Cake of Nigella sativa Seeds. International Journal of Molecular Sciences, 2020, 21, 832.	1.8	34
13	Development and properties of new chitosan-based films plasticized with spermidine and/or glycerol. Food Hydrocolloids, 2019, 87, 245-252.	5.6	49
14	Microbiological and Physicochemical Properties of Meat Coated with Microencapsulated Mexican Oregano (Lippia graveolens Kunth) and Basil (Ocimum basilicum L.) Essential Oils Mixture. Coatings, 2019, 9, 414.	1.2	8
15	Glycerol-Plasticized Films Obtained from Whey Proteins Denatured at Alkaline pH. Coatings, 2019, 9, 322.	1.2	27
16	Improved shelf-life of Nabulsi cheese wrapped with hydrocolloid films. Food Hydrocolloids, 2019, 96, 29-35.	5.6	21
17	Effect of Mesoporous Silica Nanoparticles on Glycerol-Plasticized Anionic and Cationic Polysaccharide Edible Films. Coatings, 2019, 9, 172.	1.2	14
18	Effect of Transglutaminase Cross-Linking in Protein Isolates from a Mixture of Two Quinoa Varieties with Chitosan on the Physicochemical Properties of Edible Films. Coatings, 2019, 9, 736.	1.2	26

PROSPERO DI PIERRO

#	Article	IF	CITATIONS
19	Transglutaminase Cross-Linked Edible Films and Coatings for Food Applications. , 2019, , 369-388.		10
20	Bioactive mesoporous silica nanocomposite films obtained from native and transglutaminase-crosslinked bitter vetch proteins. Food Hydrocolloids, 2018, 82, 106-115.	5.6	40
21	Application of Transglutaminase Crosslinked Whey Protein–Pectin Coating Improves Egg Quality and Minimizes the Breakage and Porosity of Eggshells. Coatings, 2018, 8, 438.	1.2	16
22	Dairy Whey Protein-Based Edible Films and Coatings for Food Preservation. , 2018, , 439-456.		8
23	Effect of Nanoemulsified and Microencapsulated Mexican Oregano (<i>Lippia graveolens</i> Kunth) Essential Oil Coatings on Quality of Fresh Pork Meat. Journal of Food Science, 2017, 82, 1423-1432.	1.5	22
24	Fresh-cut fruit and vegetable coatings by transglutaminase-crosslinked whey protein/pectin edible films. LWT - Food Science and Technology, 2017, 75, 124-130.	2.5	103
25	Physical, Structural, Barrier, and Antifungal Characterization of Chitosan–Zein Edible Films with Added Essential Oils. International Journal of Molecular Sciences, 2017, 18, 2370.	1.8	60
26	Plasticizing Effects of Polyamines in Protein-Based Films. International Journal of Molecular Sciences, 2017, 18, 1026.	1.8	18
27	Tuning the Functional Properties of Bitter Vetch (Vicia ervilia) Protein Films Grafted with Spermidine. International Journal of Molecular Sciences, 2017, 18, 2658.	1.8	16
28	Stabilization of Charged Polysaccharide Film Forming Solution by Sodium Chloride: Nanoparticle Z-Average and Zeta-Potential Monitoring. Journal of Biotechnology & Biomaterials, 2016, 06, .	0.3	6
29	Blend films of pectin and bitter vetch (Vicia ervilia) proteins: Properties and effect of transglutaminase. Innovative Food Science and Emerging Technologies, 2016, 36, 245-251.	2.7	36
30	Bitter vetch (Vicia ervilia) seed protein concentrate as possible source for production of bilayered films and biodegradable containers. Food Hydrocolloids, 2016, 60, 232-242.	5.6	26
31	Enzymatic milk clotting activity in artichoke (Cynara scolymus) leaves and alpine thistle (Carduus) Tj ETQq1 1 0.7 115-121.	'84314 rg 4.2	BT /Overlock 28
32	Polyamines as new cationic plasticizers for pectin-based edible films. Carbohydrate Polymers, 2016, 153, 222-228.	5.1	28
33	Impact of transglutaminase treatment on properties and in vitro digestibility of white bean (Phaseolus) Tj ETQq1	1 0.78431	14 ₂ gBT /Ovei
34	Microstructure and properties of bitter vetch (Vicia ervilia) protein films reinforced by microbial transglutaminase. Food Hydrocolloids, 2015, 50, 102-107.	5.6	44
35	Application of Transglutaminase-Crosslinked Whey Protein/Pectin Films as Water Barrier Coatings in Fried and Baked Foods. Food and Bioprocess Technology, 2014, 7, 447-455.	2.6	68
36	Transglutaminase-mediated macromolecular assembly: production of conjugates for food and pharmaceutical applications. Amino Acids, 2014, 46, 767-776.	1.2	22

PROSPERO DI PIERRO

#	Article	IF	CITATIONS
37	Characterization of Citrus pectin edible films containing transglutaminase-modified phaseolin. Carbohydrate Polymers, 2014, 106, 200-208.	5.1	53
38	Trehalose ontaining hydrocolloid edible films prepared in the presence of transglutaminase. Biopolymers, 2014, 101, 931-937.	1.2	22
39	Nanochannel-based electrochemical assay for transglutaminase activity. Chemical Communications, 2014, 50, 13356-13358.	2.2	27
40	Gold surface patterned with cyclodextrin-based molecular nanopores for electrochemical assay of transglutaminase activity. Electrochemistry Communications, 2014, 40, 13-16.	2.3	2
41	Transglutaminase-mediated modification of ovomucoid: effects on its trypsin inhibitory activity and antigenic properties. Amino Acids, 2013, 44, 285-292.	1.2	39
42	Effect of Transglutaminase on the Mechanical and Barrier Properties of Whey Protein/Pectin Films Prepared at Complexation pH. Journal of Agricultural and Food Chemistry, 2013, 61, 4593-4598.	2.4	39
43	Scale-up analysis and critical issues of an experimental pilot plant for edible film production using agricultural waste processing. Journal of Agricultural Engineering, 2013, 43, 22.	0.7	0
44	Higher susceptibility to amyloid fibril formation of the recombinant ovine prion protein modified by transglutaminase. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 1509-1515.	1.8	16
45	Chitosan/whey protein film as active coating to extend Ricotta cheese shelf-life. LWT - Food Science and Technology, 2011, 44, 2324-2327.	2.5	178
46	Transglutaminase Crosslinked Pectin- and Chitosan-based Edible Films: A Review. Critical Reviews in Food Science and Nutrition, 2011, 51, 223-238.	5.4	91
47	Effect of Surface Density on the Engineering Properties of High Methoxyl Pectin-Based Edible Films. Food and Bioprocess Technology, 2011, 4, 1228-1236.	2.6	49
48	Promising Perspectives for Transglutaminase In "Bioplastics―Production. Journal of Biotechnology & Biomaterials, 2011, 01, .	0.3	17
49	Putrescine–polysaccharide conjugates as transglutaminase substrates and their possible use in producing crosslinked films. Amino Acids, 2010, 38, 669-675.	1.2	17
50	Swelling, Mechanical, and Barrier Properties of Albedo-Based Films Prepared in the Presence of Phaseolin Cross-Linked or Not by Transglutaminase. Biomacromolecules, 2010, 11, 2394-2398.	2.6	37
51	Transglutaminase-Induced Chemical and Rheological Properties of Cheese. Food Biotechnology, 2010, 24, 107-120.	0.6	40
52	Role of constituents on the network formation of hydrocolloid edible films. Journal of Food Engineering, 2008, 89, 195-203.	2.7	22
53	Synthesis and Resistance to in Vitro Proteolysis of Transglutaminase Cross-Linked Phaseolin, the Major Storage Protein from Phaseolus vulgaris. Journal of Agricultural and Food Chemistry, 2007, 55, 4717-4721.	2.4	45
54	Transglutaminase-catalyzed preparation of chitosan–ovalbumin films. Enzyme and Microbial Technology, 2007, 40, 437-441.	1.6	63

PROSPERO DI PIERRO

#	Article	IF	CITATIONS
55	Transglutaminase-catalyzed site-specific glycosidation of catalase with aminated dextran. Journal of Biotechnology, 2006, 122, 326-333.	1.9	34
56	Chitosanâ~'Whey Protein Edible Films Produced in the Absence or Presence of Transglutaminase:Â Analysis of Their Mechanical and Barrier Properties. Biomacromolecules, 2006, 7, 744-749.	2.6	151
57	Transglutaminase-catalysed glycosidation of trypsin with aminated polysaccharides. World Journal of Microbiology and Biotechnology, 2006, 22, 595-602.	1.7	12
58	Solubility and Permeability Properties of Edible Pectin-Soy Flour Films Obtained in the Absence or Presence of Transglutaminase. Food Biotechnology, 2005, 19, 37-49.	0.6	39
59	Incorporation of whey proteins into cheese curd by using transglutaminase. Biotechnology and Applied Biochemistry, 2003, 38, 289.	1.4	73
60	Transglutaminase-catalyzed synthesis of trypsin-cyclodextrin conjugates: Kinetics and stability properties. Biotechnology and Bioengineering, 2003, 81, 732-737.	1.7	57
61	Preparation and mechanical properties of edible pectin–soy flour films obtained in the absence or presence of transglutaminase. Journal of Biotechnology, 2003, 102, 191-198.	1.9	144
62	Effects of docosahexaenoic acid on calcium pathway in adult rat cardiomyocytes. Life Sciences, 2002, 71, 993-1004.	2.0	23
63	Substance P and its transglutaminase-synthesized spermine derivative elicit yawning behavior via nitric oxide in rats. Peptides, 2001, 22, 1453-1457.	1.2	16
64	Endothelin-1 induced bronchial hyperresponsiveness in the rabbit: an ET A receptor-mediated phenomenon. Naunyn-Schmiedeberg's Archives of Pharmacology, 1999, 360, 665-669.	1.4	9
65	Rat Seminal Vesicle Protein SV-IV and Its Transglutaminase-Synthesized Polyaminated Derivative SPD2-SV-IV Induce Cytokine Release from Human Resting Lymphocytes and Monocytesin Vitro. Cellular Immunology, 1996, 168, 148-157.	1.4	29
66	Neurokinin Receptors Could Be Differentiated by Their Capacity to Respond to the Transglutaminase‧ynthesized γâ€(Glutamyl ⁵)Spermine Derivative of Substance P. Journal of Neurochemistry, 1995, 65, 420-426.	2.1	22
67	Human-immunodeficiency-virus transmembrane glycoprotein gp41 is an amino acceptor and donor substrate for transglutaminase in vitro. FEBS Journal, 1993, 215, 99-104.	0.2	22