Heeyoung Jung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/523625/publications.pdf Version: 2024-02-01

HEEVOUNG LUNG

#	Article	IF	CITATIONS
1	Two-band optical gain and ultrabright electroluminescence from colloidal quantum dots at 1000 A cmâ~'2. Nature Communications, 2022, 13, .	12.8	22
2	Highly versatile near-infrared emitters based on an atomically defined HgS interlayer embedded into a CdSe/CdS quantum dot. Nature Nanotechnology, 2021, 16, 673-679.	31.5	37
3	Prospects and challenges of colloidal quantum dot laser diodes. Nature Photonics, 2021, 15, 643-655.	31.4	63
4	A Bioinspired Stretchable Sensoryâ€Neuromorphic System. Advanced Materials, 2021, 33, e2104690.	21.0	67
5	Degradation of electrical characteristics in low-bandgap polymer solar cells associated with light-induced aging. Organic Electronics, 2020, 81, 105686.	2.6	7
6	Improving Performance of Inverted Blue Quantumâ€Dot Lightâ€Emitting Diodes by Adopting Organic/Inorganic Double Electron Transport Layers. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900737.	2.4	8
7	Fieldâ€Effect Transistors: Threshold Voltage Control of Multilayered MoS ₂ Fieldâ€Effect Transistors via Octadecyltrichlorosilane and their Applications to Active Matrixed Quantum Dot Displays Driven by Enhancementâ€Mode Logic Gates (Small 7/2019). Small, 2019, 15, 1970037.	10.0	0
8	Threshold Voltage Control of Multilayered MoS ₂ Fieldâ€Effect Transistors via Octadecyltrichlorosilane and their Applications to Active Matrixed Quantum Dot Displays Driven by Enhancementâ€Mode Logic Gates. Small, 2019, 15, e1803852.	10.0	16
9	Unraveling the Origin of Operational Instability of Quantum Dot Based Light-Emitting Diodes. ACS Nano, 2018, 12, 10231-10239.	14.6	123
10	Ligand-Asymmetric Janus Quantum Dots for Efficient Blue-Quantum Dot Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 22453-22459.	8.0	30
11	Highly soluble fluorous alkyl ether-tagged imaging materials for the photo-patterning of organic light-emitting devices. Journal of Materials Chemistry C, 2017, 5, 926-930.	5.5	9
12	Multifunctional Dendrimer Ligands for High-Efficiency, Solution-Processed Quantum Dot Light-Emitting Diodes. ACS Nano, 2017, 11, 684-692.	14.6	70
13	Analysis of Interfacial Layer-Induced Open-Circuit Voltage Burn-In Loss in Polymer Solar Cells on the Basis of Electroluminescence and Impedance Spectroscopy. ACS Applied Materials & Interfaces, 2017, 9, 24052-24060.	8.0	10
14	46.1: <i>Invited Paper</i> : Recent Progress of Lightâ€Emitting Diodes Based on Colloidal Quantum Dots. Digest of Technical Papers SID International Symposium, 2015, 46, 685-687.	0.3	5
15	Fluorous solvent-soluble imaging materials containing anthracene moieties. Journal of Polymer Science Part A, 2015, 53, 1252-1259.	2.3	8
16	Semiconductor nanocrystals in fluorous liquids for the construction of light-emitting diodes. Journal of Materials Chemistry C, 2015, 3, 2759-2762.	5.5	5
17	Pâ€86: Improved Performance of Quantum Dot Light Emitting Diodes by Using Charge Blocking Layer. Digest of Technical Papers SID International Symposium, 2014, 45, 1309-1311.	0.3	1
18	Enhanced performances in inverted bottom-emission organic light-emitting diodes with KBH ₄ -doped electron-injection layer. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 1807-1811.	1.8	4