## Emilio Rodriguez-Caballero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5236038/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Mediterranean badlands: Their driving processes and climate change futures. Earth Surface Processes and Landforms, 2022, 47, 17-31.                                                                                      | 1.2 | 9         |
| 2  | Temporal dynamics of dryland soil CO2 efflux using high-frequency measurements: Patterns and dominant drivers among biocrust types, vegetation and bare soil. Geoderma, 2022, 405, 115404.                               | 2.3 | 10        |
| 3  | Effects of climate change and land use intensification on regional biological soil crust cover and composition in southern Africa. Geoderma, 2022, 406, 115508.                                                          | 2.3 | 14        |
| 4  | Biocrusts and catchment asymmetry in Tabernas Desert (Almeria, Spain). Geoderma, 2022, 406, 115526.                                                                                                                      | 2.3 | 6         |
| 5  | Design Optimization of Biocrust-Plant Spatial Configuration for Dry Ecosystem Restoration Using<br>Water Redistribution and Erosion Models. Frontiers in Ecology and Evolution, 2022, 10, .                              | 1.1 | 3         |
| 6  | Ecogeographical patterns in owl plumage colouration: Climate and vegetation cover predict global colour variation. Global Ecology and Biogeography, 2022, 31, 515-530.                                                   | 2.7 | 7         |
| 7  | Global cycling and climate effects of aeolian dust controlled by biological soil crusts. Nature<br>Geoscience, 2022, 15, 458-463.                                                                                        | 5.4 | 36        |
| 8  | What is a biocrust? A refined, contemporary definition for a broadening research community.<br>Biological Reviews, 2022, 97, 1768-1785.                                                                                  | 4.7 | 87        |
| 9  | Effect of water availability on induced cyanobacterial biocrust development. Catena, 2021, 197, 104988.                                                                                                                  | 2.2 | 19        |
| 10 | Mask R-CNN and OBIA Fusion Improves the Segmentation of Scattered Vegetation in Very<br>High-Resolution Optical Sensors. Sensors, 2021, 21, 320.                                                                         | 2.1 | 28        |
| 11 | Landslides on dry badlands: UAV images to identify the drivers controlling their unexpected occurrence on vegetated hillslopes. Journal of Arid Environments, 2021, 187, 104434.                                         | 1.2 | 8         |
| 12 | Non-Destructive Biomass Estimation in Mediterranean Alpha Steppes: Improving Traditional Methods<br>for Measuring Dry and Green Fractions by Combining Proximal Remote Sensing Tools. Remote Sensing,<br>2021, 13, 2970. | 1.8 | 5         |
| 13 | Overview and Seasonality of PM10 and PM2.5 in Guayaquil, Ecuador. Aerosol Science and Engineering, 2021, 5, 499-515.                                                                                                     | 1.1 | 6         |
| 14 | Non-rainfall water inputs: A key water source for biocrust carbon fixation. Science of the Total<br>Environment, 2021, 792, 148299.                                                                                      | 3.9 | 18        |
| 15 | Effects of Agricultural Use on Endangered Plant Taxa in Spain. Agriculture (Switzerland), 2021, 11,<br>1097.                                                                                                             | 1.4 | 2         |
| 16 | Biocrust restoration: a key tool to recover degraded arid ecosystem functioning. Ecosistemas, 2021, 30, 2236.                                                                                                            | 0.2 | 3         |
| 17 | Cryptogamic organisms are a substantial source and sink for volatile organic compounds in the<br>Amazon region. Communications Earth & Environment, 2021, 2, .                                                           | 2.6 | 5         |
| 18 | The pervasive and multifaceted influence of biocrusts on water in the world's drylands. Global Change Biology, 2020, 26, 6003-6014.                                                                                      | 4.2 | 129       |

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Comment on â€~Kidron, G. J. (2018). Biocrust research: A critical view on eight common<br>hydrologicalâ€related paradigms and dubious theses. <i>Ecohydrology</i> , e2061'. Ecohydrology, 2020,<br>13, e2215.                  | 1.1 | 1         |
| 20 | Biological soil crusts in ecological restoration: emerging research and perspectives. Restoration Ecology, 2020, 28, S3.                                                                                                       | 1.4 | 46        |
| 21 | Water Regulation in Cyanobacterial Biocrusts from Drylands: Negative Impacts of Anthropogenic<br>Disturbance. Water (Switzerland), 2020, 12, 720.                                                                              | 1.2 | 42        |
| 22 | Land degradation effects on composition of pioneering soil communities: An alternative successional sequence for dryland cyanobacterial biocrusts. Soil Biology and Biochemistry, 2020, 146, 107824.                           | 4.2 | 28        |
| 23 | Habitat requirements of the Mhorr gazelle: What does this species need to survive in the wild?. Global<br>Ecology and Conservation, 2020, 24, e01389.                                                                          | 1.0 | 3         |
| 24 | Identifying social–ecological gaps to promote biocrust conservation actions. Web Ecology, 2020, 20, 117-132.                                                                                                                   | 0.4 | 6         |
| 25 | Towards a predictive framework for biocrust mediation of plant performance: A metaâ€analysis. Journal of Ecology, 2019, 107, 2789-2807.                                                                                        | 1.9 | 92        |
| 26 | Land cover and its transformation in the backward trajectory footprint region of the Amazon Tall<br>Tower Observatory. Atmospheric Chemistry and Physics, 2019, 19, 8425-8470.                                                 | 1.9 | 41        |
| 27 | Biocrust landscapeâ€scale spatial distribution is strongly controlled by terrain attributes: Topographic thresholds for colonization in a semiarid badland system. Earth Surface Processes and Landforms, 2019, 44, 2771-2779. | 1.2 | 27        |
| 28 | Assessing the influence of soil abiotic and biotic factors on Nostoc commune inoculation success.<br>Plant and Soil, 2019, 444, 57-70.                                                                                         | 1.8 | 12        |
| 29 | The first reintroduction project for mhorr gazelle (Nanger dama mhorr) into the wild: Knowledge and experience gained to support future conservation actions. Clobal Ecology and Conservation, 2019, 19, e00680.               | 1.0 | 13        |
| 30 | Spectral Response Analysis: An Indirect and Non-Destructive Methodology for the Chlorophyll Quantification of Biocrusts. Remote Sensing, 2019, 11, 1350.                                                                       | 1.8 | 24        |
| 31 | Habitat-dependent composition of bacterial and fungal communities in biological soil crusts from<br>Oman. Scientific Reports, 2019, 9, 6468.                                                                                   | 1.6 | 34        |
| 32 | The protective role of cyanobacteria on soil stability in two Aridisols in northeastern Iran. Geoderma<br>Regional, 2019, 16, e00201.                                                                                          | 0.9 | 23        |
| 33 | Dryland photoautotrophic soil surface communities endangered by global change. Nature Geoscience, 2018, 11, 185-189.                                                                                                           | 5.4 | 302       |
| 34 | Insights into microbial involvement in desert varnish formation retrieved from metagenomic analysis.<br>Environmental Microbiology Reports, 2018, 10, 264-271.                                                                 | 1.0 | 27        |
| 35 | Runoff from biocrust: A vital resource for vegetation performance on Mediterranean steppes.<br>Ecohydrology, 2018, 11, e1977.                                                                                                  | 1.1 | 34        |
| 36 | Ecosystem services provided by biocrusts: From ecosystem functions to social values. Journal of Arid Environments, 2018, 159, 45-53.                                                                                           | 1.2 | 67        |

| #  | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Image analysis to qualify soil erodibility into a wind tunnel. Ciencia E Agrotecnologia, 2018, 42, 240-247.                                                                                                                                     | 1.5 | 1         |
| 38 | Biological soil crusts of the Succulent Karoo: a review. African Journal of Range and Forage Science, 2018, 35, 335-350.                                                                                                                        | 0.6 | 20        |
| 39 | Runoff Generation in Badlands. , 2018, , 155-190.                                                                                                                                                                                               |     | 3         |
| 40 | Soil CO2 exchange controlled by the interaction of biocrust successional stage and environmental variables in two semiarid ecosystems. Soil Biology and Biochemistry, 2018, 124, 11-23.                                                         | 4.2 | 41        |
| 41 | Water harvesting techniques based on terrain modification enhance vegetation survival in dryland restoration. Catena, 2018, 167, 319-326.                                                                                                       | 2.2 | 14        |
| 42 | Restoring soil functions by means of cyanobacteria inoculation: Importance of soil conditions and species selection. Land Degradation and Development, 2018, 29, 3184-3193.                                                                     | 1.8 | 79        |
| 43 | Temporal variability and time compression of sediment yield in small Mediterranean catchments:<br>impacts for land and water management. Soil Use and Management, 2018, 34, 388-403.                                                            | 2.6 | 16        |
| 44 | Long-term hydrological monitoring in arid-semiarid AlmerÃa, SE Spain. What have we learned?.<br>Cuadernos De Investigacion Geografica, 2018, 44, 581-600.                                                                                       | 0.6 | 4         |
| 45 | Transferability of multi- and hyperspectral optical biocrust indices. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 126, 94-107.                                                                                                    | 4.9 | 34        |
| 46 | Biomass assessment of microbial surface communities by means of hyperspectral remote sensing data.<br>Science of the Total Environment, 2017, 586, 1287-1297.                                                                                   | 3.9 | 22        |
| 47 | Irrigated land expansion since 1985 in Southern Tunisia. Journal of African Earth Sciences, 2017, 129,<br>146-152.                                                                                                                              | 0.9 | 4         |
| 48 | Effects of biocrust on soil erosion and organic carbon losses under natural rainfall. Catena, 2017, 148, 117-125.                                                                                                                               | 2.2 | 125       |
| 49 | Optical Remote Sensing for Soil Mapping and Monitoring. , 2017, , 87-125.                                                                                                                                                                       |     | 14        |
| 50 | Vertical and lateral soil moisture patterns on a Mediterranean karst hillslope. Journal of Hydrology<br>and Hydromechanics, 2016, 64, 209-217.                                                                                                  | 0.7 | 16        |
| 51 | A new adaptive method to filter terrestrial laser scanner point clouds using morphological filters<br>and spectral information to conserve surface micro-topography. ISPRS Journal of Photogrammetry<br>and Remote Sensing, 2016, 117, 141-148. | 4.9 | 24        |
| 52 | Biocrusts positively affect the soil water balance in semiarid ecosystems. Ecohydrology, 2016, 9, 1208-1221.                                                                                                                                    | 1.1 | 145       |
| 53 | Patterns of runoff and sediment production in response to land-use changes in an ungauged<br>Mediterranean catchment. Journal of Hydrology, 2015, 531, 1054-1066.                                                                               | 2.3 | 33        |
| 54 | Biological soil crusts accelerate the nitrogen cycle through large NO and HONO emissions in<br>drylands. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112,<br>15384-15389.                            | 3.3 | 153       |

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Swelling of biocrusts upon wetting induces changes in surface micro-topography. Soil Biology and Biochemistry, 2015, 82, 107-111.                                                                       | 4.2 | 41        |
| 56 | Biological soil crust effects must be included to accurately model infiltration and erosion in drylands: An example from Tabernas Badlands. Geomorphology, 2015, 241, 331-342.                          | 1.1 | 46        |
| 57 | Importance of biocrusts in dryland monitoring using spectral indices. Remote Sensing of Environment, 2015, 170, 32-39.                                                                                  | 4.6 | 46        |
| 58 | Penetration resistance of biological soil crusts and its dynamics after crust removal: Relationships with runoff and soil detachment. Catena, 2015, 126, 164-172.                                       | 2.2 | 52        |
| 59 | Dynamics of organic carbon losses by water erosion after biocrust removal. Journal of Hydrology and Hydromechanics, 2014, 62, 258-268.                                                                  | 0.7 | 41        |
| 60 | Advanced image processing methods as a tool to map and quantify different types of biological soil crust. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 90, 59-67.                          | 4.9 | 47        |
| 61 | Cross-scale interactions between surface components and rainfall properties. Non-linearities in the hydrological and erosive behavior of semiarid catchments. Journal of Hydrology, 2014, 517, 815-825. | 2.3 | 63        |
| 62 | Evaluación de los diferentes Ãndices para cartografiar biocostras a partir de información espectral.<br>Revista De Teledeteccion, 2014, , 79.                                                           | 0.6 | 2         |
| 63 | Soil Loss and Runoff in Semiarid Ecosystems: A Complex Interaction Between Biological Soil Crusts,<br>Micro-topography, and Hydrological Drivers. Ecosystems, 2013, 16, 529-546.                        | 1.6 | 108       |
| 64 | Effects of biological soil crusts on surface roughness and implications for runoff and erosion.<br>Geomorphology, 2012, 145-146, 81-89.                                                                 | 1.1 | 188       |
| 65 | Runoff at contrasting scales in a semiarid ecosystem: A complex balance between biological soil crust features and rainfall characteristics. Journal of Hydrology, 2012, 452-453, 130-138.              | 2.3 | 81        |
| 66 | CaracterÃsticas de las costras fÃsicas y biológicas del suelo con mayor influencia sobre la infiltración<br>y la erosión en ecosistemas semiáridos. Pirineos, 2010, 165, 69-96.                         | 0.6 | 11        |