
Alistair Mathie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/523592/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gain and loss of TASK3 channel function and its regulation by novel variation cause KCNK9 imprinting syndrome. Genome Medicine, 2022, 14, .	8.2	6
2	Two-Pore Domain Potassium Channels as Drug Targets: Anesthesia and Beyond. Annual Review of Pharmacology and Toxicology, 2021, 61, 401-420.	9.4	29
3	The Prostacyclin Analogue, Treprostinil, Used in the Treatment of Pulmonary Arterial Hypertension, is a Potent Antagonist of TREK-1 and TREK-2 Potassium Channels. Frontiers in Pharmacology, 2021, 12, 705421.	3.5	1
4	Block of TREK and TRESK K2P channels by lamotrigine and two derivatives sipatrigine and CEN-092. Biochemistry and Biophysics Reports, 2021, 26, 101021.	1.3	0
5	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Enzymes. British Journal of Pharmacology, 2021, 178, S313-S411.	5.4	320
6	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Catalytic receptors. British Journal of Pharmacology, 2021, 178, S264-S312.	5.4	148
7	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Ion channels. British Journal of Pharmacology, 2021, 178, S157-S245.	5.4	187
8	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Introduction and Other Protein Targets. British Journal of Pharmacology, 2021, 178, S1-S26.	5.4	183
9	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Nuclear hormone receptors. British Journal of Pharmacology, 2021, 178, S246-S263.	5.4	100
10	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Transporters. British Journal of Pharmacology, 2021, 178, S412-S513.	5.4	114
11	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G proteinâ€coupled receptors. British Journal of Pharmacology, 2021, 178, S27-S156.	5.4	337
12	Pharmacological Approaches to Studying Potassium Channels. Handbook of Experimental Pharmacology, 2021, 267, 83-111.	1.8	12
13	Heterologous Expression of Ion Channels in Mammalian Cell Lines. Methods in Molecular Biology, 2021, 2188, 51-65.	0.9	8
14	A "Target Class―Screen to Identify Activators of Two-Pore Domain Potassium (K2P) Channels. SLAS Discovery, 2021, 26, 428-438.	2.7	5
15	Effects of the ventilatory stimulant, doxapram on human TASKâ€3 (KCNK9, K2P9.1) channels and TASKâ€1 (KCNK3, K2P3.1) channels. Acta Physiologica, 2020, 228, e13361.	3.8	20
16	Opportunistic screening for atrial fibrillation by clinical pharmacists in UK general practice during the influenza vaccination season: A cross-sectional feasibility study. PLoS Medicine, 2020, 17, e1003197.	8.4	10
17	TRESK is a key regulator of nocturnal suprachiasmatic nucleus dynamics and light adaptive responses. Nature Communications, 2020, 11, 4614.	12.8	10
18	Pharmacists detecting atrial fibrillation in general practice: a qualitative focus group study. BJGP Open, 2020, 4, bjgpopen20X101042.	1.8	5

#	Article	IF	CITATIONS
19	Title is missing!. , 2020, 17, e1003197.		Ο
20	Title is missing!. , 2020, 17, e1003197.		0
21	Title is missing!. , 2020, 17, e1003197.		0
22	Title is missing!. , 2020, 17, e1003197.		0
23	Title is missing!. , 2020, 17, e1003197.		0
24	Title is missing!. , 2020, 17, e1003197.		0
25	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G proteinâ€coupled receptors. British Journal of Pharmacology, 2019, 176, S21-S141.	5.4	519
26	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology, 2019, 176, S142-S228.	5.4	242
27	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Nuclear hormone receptors. British Journal of Pharmacology, 2019, 176, S229-S246.	5.4	127
28	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Catalytic receptors. British Journal of Pharmacology, 2019, 176, S247-S296.	5.4	156
29	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Enzymes. British Journal of Pharmacology, 2019, 176, S297-S396.	5.4	423
30	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Transporters. British Journal of Pharmacology, 2019, 176, S397-S493.	5.4	166
31	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Introduction and Other Protein Targets. British Journal of Pharmacology, 2019, 176, S1-S20.	5.4	295
32	Pharmacologically reversible, loss of function mutations in the TM2 and TM4 inner pore helices of TREK-1 K2P channels. Scientific Reports, 2019, 9, 12394.	3.3	5
33	Pranlukast is a novel small molecule activator of the two-pore domain potassium channel TREK2. Biochemical and Biophysical Research Communications, 2019, 520, 35-40.	2.1	16
34	Characterization and regulation of wildâ€ŧype and mutant TASKâ€1 two pore domain potassium channels indicated in pulmonary arterial hypertension. Journal of Physiology, 2019, 597, 1087-1101.	2.9	35
35	Infection in pulmonary vascular diseases: Would another consortium really be the way to go?. Global Cardiology Science & Practice, 2019, 2019, 1.	0.4	5
36	Pharmacists detecting atrial fibrillation (PDAF) in primary care during the influenza vaccination season: a multisite, cross-sectional screening protocol. BMJ Open, 2018, 8, e021121.	1.9	11

#	Article	IF	CITATIONS
37	Glâ€530159, a novel, selective, mechanosensitive twoâ€poreâ€domain potassium (K _{2P}) channel opener, reduces rat dorsal root ganglion neuron excitability. British Journal of Pharmacology, 2018, 175, 2272-2283.	5.4	40
38	Activation of TREK currents by riluzole in three subgroups of cultured mouse nodose ganglion neurons. PLoS ONE, 2018, 13, e0199282.	2.5	15
39	HIV transgene expression impairs K ⁺ channel function in the pulmonary vasculature. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L711-L723.	2.9	19
40	The Role of the K2P Channels TASKâ€1, TREKâ€1 and TREKâ€2 in the Use of Treprostinil Therapy in Pulmonary Arterial Hypertension. FASEB Journal, 2018, 32, 567.6.	0.5	3
41	Enhanced inflammatory cell profiles in schistosomiasisâ€induced pulmonary vascular remodeling. Pulmonary Circulation, 2017, 7, 244-252.	1.7	6
42	Terbinafine is a novel and selective activator of the two-pore domain potassium channel TASK3. Biochemical and Biophysical Research Communications, 2017, 493, 444-450.	2.1	27
43	TASK-1 (KCNK3) channels in the lung: from cell biology to clinical implications. European Respiratory Journal, 2017, 50, 1700754.	6.7	60
44	Aristolochic acid, a plant extract used in the treatment of pain and linked to Balkan endemic nephropathy, is a regulator of K2P channels. British Journal of Pharmacology, 2016, 173, 1639-1652.	5.4	30
45	Two-pore domain potassium channels: potential therapeutic targets for the treatment of pain. Pflugers Archiv European Journal of Physiology, 2015, 467, 931-943.	2.8	80
46	Enhancement of TWIK-related Acid-sensitive Potassium Channel 3 (TASK3) Two-pore Domain Potassium Channel Activity by Tumor Necrosis Factor α. Journal of Biological Chemistry, 2014, 289, 1388-1401.	3.4	9
47	Enhancement of Current through Trek1 Two Pore Domain Channels by Flufenamic Acid. Biophysical Journal, 2014, 106, 748a.	0.5	0
48	Influence of the N Terminus on the Biophysical Properties and Pharmacology of TREK1 Potassium Channels. Molecular Pharmacology, 2014, 85, 671-681.	2.3	52
49	Recovery of Current through Mutated TASK3 Potassium Channels Underlying Birk Barel Syndrome. Molecular Pharmacology, 2014, 85, 397-407.	2.3	32
50	Regulation of TREK1 two pore domain potassium channels by citalopram. FASEB Journal, 2013, 27, 913.31.	0.5	1
51	GuideToPharmacology.org – an update. British Journal of Pharmacology, 2012, 167, 697-698.	5.4	3
52	Guide to Receptors and Channels (GRAC), 5th edition. British Journal of Pharmacology, 2011, 164, S1-324.	5.4	827
53	Trafficking of Neuronal Two Pore Domain Potassium Channels. Current Neuropharmacology, 2010, 8, 276-286.	2.9	29
54	SYMPOSIUM REVIEW: Gating of two pore domain potassium channels. Journal of Physiology, 2010, 588, 3149-3156.	2.9	68

#	Article	IF	CITATIONS
55	Dominant Negative Effects of a Non-conducting TREK1 Splice Variant Expressed in Brain*. Journal of Biological Chemistry, 2010, 285, 29295-29304.	3.4	37
56	lon channels as novel therapeutic targets in the treatment of pain. Journal of Pharmacy and Pharmacology, 2010, 62, 1089-1095.	2.4	51
57	Guide to Receptors and Channels (GRAC), 4th edition. British Journal of Pharmacology, 2009, 158, S1-254.	5.4	410
58	Neuronal Potassium Channels. , 2009, , 2792-2797.		0
59	Guide to Receptors and Channels (GRAC), 3rd edition. British Journal of Pharmacology, 2008, 153, S1-209.	5.4	616
60	The M1P1 Loop of TASK3 K2P Channels Apposes the Selectivity Filter and Influences Channel Function. Journal of Biological Chemistry, 2008, 283, 16985-16992.	3.4	35
61	TASK-3 Two-Pore Domain Potassium Channels Enable Sustained High-Frequency Firing in Cerebellar Granule Neurons. Journal of Neuroscience, 2007, 27, 9329-9340.	3.6	109
62	Gαq-Mediated Regulation of TASK3 Two-Pore Domain Potassium Channels: The Role of Protein Kinase C. Molecular Pharmacology, 2007, 71, 1666-1675.	2.3	54
63	Neuronal two-pore-domain potassium channels and their regulation by G protein-coupled receptors. Journal of Physiology, 2007, 578, 377-385.	2.9	150
64	Guide to Receptors and Channels, 2nd edition (2007 Revision). British Journal of Pharmacology, 2007, 150, S1-S1.	5.4	132
65	Identification of a region in the TASK3 two pore domain potassium channel that is critical for its blockade by methanandamide. British Journal of Pharmacology, 2007, 152, 778-786.	5.4	37
66	Therapeutic potential of neuronal two-pore domain potassium-channel modulators. Current Opinion in Investigational Drugs, 2007, 8, 555-62.	2.3	60
67	Guide to Receptors and Channels, 2nd edition. British Journal of Pharmacology, 2006, 147, S1-S1.	5.4	53
68	Zinc and copper: Pharmacological probes and endogenous modulators of neuronal excitability. , 2006, 111, 567-583.		213
69	The in Vivo Contributions of TASK-1-Containing Channels to the Actions of Inhalation Anesthetics, the α2 Adrenergic Sedative Dexmedetomidine, and Cannabinoid Agonists. Journal of Pharmacology and Experimental Therapeutics, 2006, 317, 615-626.	2.5	82
70	Inhibition of the human two-pore domain potassium channel, TREK-1, by fluoxetine and its metabolite norfluoxetine. British Journal of Pharmacology, 2005, 144, 821-829.	5.4	167
71	Guide to Receptors and Channels, 1st Edition (2005 revision). British Journal of Pharmacology, 2005, 144, S1-S2.	5.4	17
72	Modifying the Subunit Composition of TASK Channels Alters the Modulation of a Leak Conductance in Cerebellar Granule Neurons. Journal of Neuroscience, 2005, 25, 11455-11467.	3.6	124

#	Article	IF	CITATIONS
73	Two-Pore-Domain K+ Channels Are a Novel Target for the Anesthetic Gases Xenon, Nitrous Oxide, and Cyclopropane. Molecular Pharmacology, 2004, 65, 443-452.	2.3	294
74	Selective block of the human 2-P domain potassium channel, TASK-3, and the native leak potassium current, IKSO, by zinc. Journal of Physiology, 2004, 560, 51-62.	2.9	71
75	What are the roles of the many different types of potassium channel expressed in cerebellar granule cells?. Cerebellum, 2003, 2, 11-25.	2.5	48
76	Neuronal ion channels and their sensitivity to extremely low frequency weak electric field effects. Radiation Protection Dosimetry, 2003, 106, 311-315.	0.8	57
77	What are the roles of the many different types of potassium channel expressed in cerebellar granule cells?. Cerebellum, 2003, 2, 11-25.	2.5	3
78	Inhibition of the potassium current IKSO, in cerebellar granule cells, by the inhibitors of MEK1 activation, PD 98059 and U 0126. Neuropharmacology, 2002, 42, 221-228.	4.1	6
79	Background potassium channels move into focus. Journal of Physiology, 2002, 542, 334-334.	2.9	1
80	Pharmacological characterization of a non-inactivating outward current observed in mouse cerebellar Purkinje neurones. British Journal of Pharmacology, 2002, 135, 705-712.	5.4	35
81	TiPS nomenclature supplement 2001. Trends in Pharmacological Sciences, 2001, 22, 1.	8.7	64
82	MAMMALIAN TWO-PORE DOMAIN POTASSIUM CHANNELS. , 2001, , 5-8.		0
83	Inhibition of delayed rectifier K+conductance in cultured rat cerebellar granule neurons by activation of calcium-permeable AMPA receptors. European Journal of Neuroscience, 2000, 12, 935-944.	2.6	10
84	The role of Ca 2+ stores in the muscarinic inhibition of the K + current I K(SO) in neonatal rat cerebellar granule cells. Journal of Physiology, 2000, 529, 321-331.	2.9	35
85	A functional role for the two-pore domain potassium channel TASK-1 in cerebellar granule neurons. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 3614-3618.	7.1	240
86	Purinergic and muscarinic receptor activation activates a common calcium entry pathway in rat neocortical neurons and glial cells. Neuropharmacology, 2000, 39, 1768-1778.	4.1	28
87	Inhibition of neuronal KV potassium currents by the antidepressant drug, fluoxetine. British Journal of Pharmacology, 1999, 128, 1609-1615.	5.4	54
88	Characterization of the hyperpolarization-activated chloride current in dissociated rat sympathetic neurons. Journal of Physiology, 1998, 506, 665-678.	2.9	103
89	Inhibition by inorganic ions of a sustained calcium signal evoked by activation of mGlu5 receptors in rat cortical neurons and glia. British Journal of Pharmacology, 1998, 125, 1551-1561.	5.4	19
90	Voltage-activated potassium channels in mammalian neurons and their block by novel pharmacological agents. General Pharmacology, 1998, 30, 13-24.	0.7	171

#	Article	IF	CITATIONS
91	Activation of group I metabotropic glutamate receptors elicits pH changes in cultured rat cortical glia and neurons. Neuroscience, 1998, 86, 1109-1120.	2.3	10
92	Is eag the answer to the M-current?. Trends in Neurosciences, 1997, 20, 14.	8.6	10
93	Effects on K ⁺ currents in rat cerebellar granule neurones of a membraneâ€permeable analogue of the calcium chelator BAPTA. British Journal of Pharmacology, 1996, 118, 1772-1778.	5.4	24
94	A nonâ€inactivating K+ current sensitive to muscarinic receptor activation in rat cultured cerebellar granule neurons Journal of Physiology, 1996, 491, 401-412.	2.9	88
95	Potent block of potassium currents in rat isolated sympathetic neurones by the uncharged form of amitriptyline and related tricyclic compounds. British Journal of Pharmacology, 1995, 116, 2191-2200.	5.4	23
96	Multiple G-protein-coupled pathways inhibit N-type Ca channels of neurons. Life Sciences, 1995, 56, 989-992.	4.3	32
97	Methods in neurosciences volume 19: Ion channels of excitable cells. Neuroscience, 1995, 64, 845.	2.3	0
98	Modulation of the gating of the transient outward potassium current of rat isolated cerebellar granule neurons by lanthanum. Pflugers Archiv European Journal of Physiology, 1994, 428, 209-216.	2.8	40
99	Block of potassium currents in rat isolated sympathetic neurones by tricyclic antidepressants and structurally related compounds. British Journal of Pharmacology, 1993, 110, 1126-1132.	5.4	51
100	Characterization of muscarinic receptor subtypes inhibiting Ca2+ current and M current in rat sympathetic neurons Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 9544-9548.	7.1	152
101	5-HT3 receptor channels in dissociated rat superior cervical ganglion neurons Journal of Physiology, 1992, 448, 237-256.	2.9	82
102	Inhibition of N- and L-type calcium channels by muscarinic receptor activation in rat sympathetic neurons. Neuron, 1992, 8, 907-914.	8.1	110
103	Intracellular Ca2+ buffers disrupt muscarinic suppression of Ca2+ current and M current in rat sympathetic neurons Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 652-656.	7.1	155
104	Activation of glutamate receptors and glutamate uptake in identified macroglial cells in rat cerebellar cultures Journal of Physiology, 1991, 432, 235-258.	2.9	140
105	Conductance and kinetic properties of single nicotinic acetylcholine receptor channels in rat sympathetic neurones Journal of Physiology, 1991, 439, 717-750.	2.9	75
106	Rectification of currents activated by nicotinic acetylcholine receptors in rat sympathetic ganglion neurones Journal of Physiology, 1990, 427, 625-655.	2.9	111
107	Chapter 5 Function of nicotinic synapses. Progress in Brain Research, 1990, 84, 43-50.	1.4	1
108	Acetylcholine receptor channels and their block by clonidine in cultured bovine chromaffin cells Journal of Physiology, 1988, 402, 255-278.	2.9	34

Alistair Mathie

#	Article	IF	CITATIONS
109	Nicotinic acetylcholine receptors of nerve and muscle: Functional aspects. Trends in Pharmacological Sciences, 1987, 8, 465-472.	8.7	55
110	Single-channel and whole-cell currents evoked by acetylcholine in dissociated sympathetic neurons of the rat. Proceedings of the Royal Society of London Series B, Containing Papers of A Biological Character, 1987, 232, 239-248.	1.8	61
111	Interactions between the effects of yohimbine, clonidine and [Ca] _o on the electrical response of the mouse vas deferens. British Journal of Pharmacology, 1986, 88, 807-814.	5.4	11
112	Ion channels activated by acetylcholine and γ-aminobutyric acid in freshly dissociated sympathetic neurones of the rat. Neuroscience Letters, 1986, 66, 275-280.	2.1	19
113	αâ€ADRENORECEPTORS AND FACILITATION AT A SYMPATHETIC NEUROEFFECTOR JUNCTION. Autonomic and Autacoid Pharmacology, 1984, 4, 53-58.	0.6	7
114	Facilitation at single release sites of a sympathetic neuroeffector junction in the mouse Journal of Physiology, 1984, 349, 57-71.	2.9	19