
Ingo Köper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5235735/publications.pdf Version: 2024-02-01

INCO KÃOED

#	Article	IF	CITATIONS
1	Model architectures for bacterial membranes. Biophysical Reviews, 2022, 14, 111-143.	1.5	22
2	Reviewing nanoplastic toxicology: It's an interface problem. Advances in Colloid and Interface Science, 2021, 288, 102337.	7.0	52
3	Comparing Surface Plasmon-Optical and Electronic Immuno-Sensing of Affinity Interactions—A Case Study. Chemosensors, 2021, 9, 11.	1.8	2
4	The Membrane Composition Defines the Spatial Organization and Function of a Major Acinetobacter baumannii Drug Efflux System. MBio, 2021, 12, e0107021.	1.8	14
5	Cellular interactions with polystyrene nanoplastics—The role of particle size and protein corona. Biointerphases, 2021, 16, 041001.	0.6	28
6	Increasing Antibiotic Susceptibility: The Use of Cationic Gold Nanoparticles in Gram-Negative Bacterial Membrane Models. Langmuir, 2021, 37, 9735-9743.	1.6	5
7	Solid-supported lipid bilayers – A versatile tool for the structural and functional characterization of membrane proteins. Methods, 2020, 180, 56-68.	1.9	14
8	Structure of soft and hard protein corona around polystyrene nanoplastics—Particle size and protein types. Biointerphases, 2020, 15, 051002.	0.6	30
9	Antibiotic delivery using gold nanoparticles. SN Applied Sciences, 2020, 2, 1.	1.5	20
10	Investigating the Structure of Self-Assembled Monolayers Related to Biological Cell Membranes. Langmuir, 2019, 35, 14213-14221.	1.6	11
11	Biomedical applications of polyelectrolyte coated spherical gold nanoparticles. Nano Convergence, 2019, 6, 11.	6.3	42
12	Soft and Hard Interactions between Polystyrene Nanoplastics and Human Serum Albumin Protein Corona. Bioconjugate Chemistry, 2019, 30, 1067-1076.	1.8	96
13	Nanoparticles in an antibiotic-loaded nanomesh for drug delivery. RSC Advances, 2019, 9, 30064-30070.	1.7	9
14	Biomimetic Membranes. , 2019, , 49-64.		2
15	A tethered bilayer lipid membrane that mimics microbial membranes. Physical Chemistry Chemical Physics, 2018, 20, 12958-12969.	1.3	36
16	Polyelectrolyte-Coated Gold Nanoparticles: The Effect of Salt and Polyelectrolyte Concentration on Colloidal Stability. Polymers, 2018, 10, 1336.	2.0	41
17	Tethered Membrane Architectures $\hat{a} \in$ "Design and Applications. Frontiers in Materials, 2018, 5, .	1.2	41
18	Synthesis and Characterization of Novel Anchorlipids for Tethered Bilayer Lipid Membranes. Langmuir, 2017, 33, 4444-4451.	1.6	23

Ingo Köper

#	Article	IF	CITATIONS
19	In situ monitoring of the effect of ionic strength and pH on plasma polymer thin films. Plasma Processes and Polymers, 2017, 14, 1700084.	1.6	7
20	Interaction of a synthetic antimicrobial peptide with a model bilayer platform mimicking bacterial membranes. Biointerphases, 2017, 12, 04E404.	0.6	11
21	Tethered and Polymer Supported Bilayer Lipid Membranes: Structure and Function. Membranes, 2016, 6, 30.	1.4	78
22	Biocompatible anti-microbial coatings for urinary catheters. RSC Advances, 2016, 6, 53303-53309.	1.7	15
23	Cell-Free Synthesis of a Functional Membrane Transporter into a Tethered Bilayer Lipid Membrane. Langmuir, 2016, 32, 2445-2449.	1.6	25
24	Oxidative Damage to Biomimetic Membrane Systems: In Situ Fe(II)/Ascorbate Initiated Oxidation and Incorporation of Synthetic Oxidized Phospholipids. Langmuir, 2015, 31, 12679-12687.	1.6	15
25	Membrane–drug interactions studied using model membrane systems. Saudi Journal of Biological Sciences, 2015, 22, 714-718.	1.8	64
26	Synthesis and characterization of bifunctional dendrimers: preliminary use for the coating of gold surfaces and the proliferation of human osteoblasts (HOB). New Journal of Chemistry, 2015, 39, 7194-7205.	1.4	22
27	Interaction of Silver Nanoparticles with Tethered Bilayer Lipid Membranes. Langmuir, 2015, 31, 5868-5874.	1.6	23
28	As flat as it gets: ultrasmooth surfaces from template-stripping procedures. Nanoscale, 2012, 4, 3820.	2.8	94
29	Promotion of Osteogenic Cell Response Using Quasicovalent Immobilized Fibronectin on Titanium Surfaces: Introduction of a Novel Biomimetic Layer System. Journal of Oral and Maxillofacial Surgery, 2012, 70, 1827-1834.	0.5	19
30	CMOS based capacitive biosensor with integrated tethered bilayer lipid membrane for real-time measurements. Biomedizinische Technik, 2012, 57, .	0.9	3
31	Streptavidinâ€coated TiO2 surfaces are biologically inert: Protein adsorption and osteoblast adhesion studies. Journal of Biomedical Materials Research - Part A, 2012, 100A, 388-395.	2.1	13
32	Dendron growth from vertically aligned single-walled carbon nanotube thin layer arrays for photovoltaic devices. Physical Chemistry Chemical Physics, 2011, 13, 6059.	1.3	18
33	Probing Proteinâ^'Membrane Interactions Using Solid Supported Membranes. Langmuir, 2011, 27, 2709-2716.	1.6	22
34	Adsorption and Conformation Behavior of Biotinylated Fibronectin on Streptavidin-Modified TiOXSurfaces Studied by SPR and AFM. Langmuir, 2011, 27, 7743-7751.	1.6	35
35	Nanoscale Patterning of Solid-Supported Membranes by Integrated Diffusion Barriers. Langmuir, 2011, 27, 7008-7015.	1.6	21
36	Dye functionalisation of PAMAM-type dendrons grown from vertically aligned single-walled carbon nanotube arrays for light harvesting antennae. Journal of Materials Chemistry, 2011, 21, 18597.	6.7	6

INGO KöPER

#	Article	IF	CITATIONS
37	Membrane-Based Sensing Approaches. Australian Journal of Chemistry, 2011, 64, 54.	0.5	6
38	Reusable Localized Surface Plasmon Sensors Based on Ultrastable Nanostructures. Small, 2010, 6, 104-109.	5.2	54
39	Assembly of the M2 Tetramer Is Strongly Modulated by Lipid Chain Length. Biophysical Journal, 2010, 99, 1810-1817.	0.2	28
40	Proteinâ^'Lipid Interactions at the Airâ^'Water Interface. Langmuir, 2010, 26, 12049-12053.	1.6	15
41	Vesicle Adsorption and Phospholipid Bilayer Formation on Topographically and Chemically Nanostructured Surfaces. Journal of Physical Chemistry B, 2010, 114, 4623-4631.	1.2	42
42	Structural Analysis of Tethered Bilayer Lipid Membranes. Langmuir, 2010, 26, 11035-11040.	1.6	66
43	Photocurrent response from vertically aligned single-walled carbon nanotube arrays. , 2010, , .		5
44	Laterally Patterned Ultraflat Surfaces. Small, 2009, 5, 821-825.	5.2	24
45	Formation of tethered bilayer lipid membranes probed by various surface sensitive techniques. Biointerphases, 2009, 4, 19-26.	0.6	47
46	Ion Channels in Tethered Bilayer Lipid Membranes on Au Electrodes. Nanostructure Science and Technology, 2009, , 211-223.	0.1	1
47	Tethered bimolecular lipid membranes—A novel model membrane platform. Electrochimica Acta, 2008, 53, 6680-6689.	2.6	109
48	Dynamics of C-phycocyanin in various deuterated trehalose/water environments measured by quasielastic and elastic neutron scattering. European Biophysics Journal, 2008, 37, 739-748.	1.2	17
49	Functional Tethered Bilayer Lipid Membranes on Aluminum Oxide. ChemPhysChem, 2008, 9, 1920-1924.	1.0	28
50	Tethered bilayer lipid membranes with giga-ohm resistances. Electrochemistry Communications, 2008, 10, 323-328.	2.3	33
51	Stable insulating tethered bilayer lipid membranes. Biointerphases, 2008, 3, FA68-FA73.	0.6	72
52	Preface. Biointerphases, 2008, 3, FA1-FA2.	0.6	1
53	Incorporation of α-Hemolysin in Different Tethered Bilayer Lipid Membrane Architectures. Langmuir, 2008, 24, 496-502.	1.6	75
54	Functional incorporation of the pore forming segment of AChR M2 into tethered bilayer lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 1114-1120.	1.4	54

INGO KöPER

#	Article	IF	CITATIONS
55	Anchor-Lipid Monolayers at the Airâ^'Water Interface; Prearranging of Model Membrane Systems. Langmuir, 2007, 23, 7672-7678.	1.6	5
56	Insulating tethered bilayer lipid membranes to study membrane proteins. Molecular BioSystems, 2007, 3, 651.	2.9	89
57	Functional Ion Channels in Tethered Bilayer Membranes—Implications for Biosensors. ChemBioChem, 2007, 8, 1246-1250.	1.3	59
58	A Molecular Toolkit for Highly Insulating Tethered Bilayer Lipid Membranes on Various Substrates. Bioconjugate Chemistry, 2006, 17, 631-637.	1.8	60
59	Chapter 2 Functional Tethered Bimolecular Lipid Membranes (tBLMs). Behavior Research Methods, 2006, , 37-53.	2.3	15
60	Functional tethered bilayer membranes as a biosensor platform. , 2005, , .		3
61	Dynamics from picoseconds to nanoseconds of trehalose in aqueous solutions as seen by quasielastic neutron scattering. Journal of Chemical Physics, 2005, 122, 014514.	1.2	19
62	Membrane on a Chip: A Functional Tethered Lipid Bilayer Membrane on Silicon Oxide Surfaces. Biophysical Journal, 2005, 89, 1780-1788.	0.2	170
63	Tethered Lipid Bilayers on Ultraflat Gold Surfaces. Langmuir, 2003, 19, 5435-5443.	1.6	251
64	Dynamics of propylene glycol and its 7-mer by neutron scattering. Journal of Chemical Physics, 2002, 116, 5073.	1.2	27
65	Hindered protein dynamics in the presence of a cryoprotecting agent. Applied Physics A: Materials Science and Processing, 2002, 74, s1257-s1259.	1.1	8
66	Solid-Supported Bilayer Lipid Membranes. , 0, , 221-232.		3