
## Gaind P Pandey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5235475/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview.<br>Journal Physics D: Applied Physics, 2008, 41, 223001.                                                                                | 1.3 | 840       |
| 2  | Experimental investigations of an ionic-liquid-based, magnesium ion conducting, polymer gel electrolyte. Journal of Power Sources, 2009, 187, 627-634.                                                                                         | 4.0 | 166       |
| 3  | All-solid-state supercapacitors with poly(3,4-ethylenedioxythiophene)-coated carbon fiber paper electrodes and ionic liquid gel polymer electrolyte. Journal of Power Sources, 2014, 245, 857-865.                                             | 4.0 | 148       |
| 4  | Gel Polymer Electrolyte Based Electrical Double Layer Capacitors: Comparative Study with<br>Multiwalled Carbon Nanotubes and Activated Carbon Electrodes. Journal of Physical Chemistry C,<br>2012, 116, 26118-26127.                          | 1.5 | 140       |
| 5  | Ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate-based gel polymer electrolyte for electrochemical capacitors. Journal of Materials Chemistry A, 2013, 1, 3372.                                                                       | 5.2 | 138       |
| 6  | Ionic liquid mediated magnesium ion conduction in poly(ethylene oxide) based polymer electrolyte.<br>Electrochimica Acta, 2011, 56, 3864-3873.                                                                                                 | 2.6 | 134       |
| 7  | Ionic liquid incorporated PEO based polymer electrolyte for electrical double layer capacitors: A comparative study with lithium and magnesium systems. Solid State Ionics, 2011, 190, 93-98.                                                  | 1.3 | 129       |
| 8  | Lithium ion transport and ion–polymer interaction in PEO based polymer electrolyte plasticized with ionic liquid. Solid State Ionics, 2011, 201, 73-80.                                                                                        | 1.3 | 128       |
| 9  | Thermostable gel polymer electrolyte based on succinonitrile and ionic liquid for high-performance solid-state supercapacitors. Journal of Power Sources, 2016, 328, 510-519.                                                                  | 4.0 | 123       |
| 10 | Magnesium ion-conducting gel polymer electrolytes dispersed with nanosized magnesium oxide.<br>Journal of Power Sources, 2009, 190, 563-572.                                                                                                   | 4.0 | 115       |
| 11 | Performance Studies of Activated Charcoal Based Electrical Double Layer Capacitors with Ionic Liquid<br>Gel Polymer Electrolytes. Energy & Fuels, 2010, 24, 6644-6652.                                                                         | 2.5 | 91        |
| 12 | Performance of solid-state supercapacitors with ionic liquid 1-ethyl-3-methylimidazolium<br>tris(pentafluoroethyl) trifluorophosphate based gel polymer electrolyte and modified MWCNT<br>electrodes. Electrochimica Acta, 2013, 105, 333-341. | 2.6 | 90        |
| 13 | Hot-press synthesized polyethylene oxide based proton conducting nanocomposite polymer electrolyte dispersed with SiO2 nanoparticles. Solid State Ionics, 2008, 179, 543-549.                                                                  | 1.3 | 84        |
| 14 | Multiwalled Carbon Nanotube Electrodes for Electrical Double Layer Capacitors with Ionic Liquid<br>Based Gel Polymer Electrolytes. Journal of the Electrochemical Society, 2010, 157, A105.                                                    | 1.3 | 79        |
| 15 | Magnesium ion-conducting gel polymer electrolytes dispersed with fumed silica for rechargeable magnesium battery application. Journal of Solid State Electrochemistry, 2011, 15, 2253-2264.                                                    | 1.2 | 76        |
| 16 | Mesoporous Hybrids of Reduced Graphene Oxide and Vanadium Pentoxide for Enhanced Performance<br>in Lithium-Ion Batteries and Electrochemical Capacitors. ACS Applied Materials & Interfaces, 2016,<br>8, 9200-9210.                            | 4.0 | 70        |
| 17 | Solid-state supercapacitors with ionic liquid based gel polymer electrolyte: Effect of lithium salt addition. Journal of Power Sources, 2013, 243, 211-218.                                                                                    | 4.0 | 69        |
| 18 | Performance studies on composite gel polymer electrolytes for rechargeable magnesium battery application. Journal of Physics and Chemistry of Solids, 2011, 72, 1408-1413.                                                                     | 1.9 | 53        |

GAIND P PANDEY

| #  | Article                                                                                                                                                                                                                                                | IF       | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|
| 19 | Solid-State Supercapacitors Based on Pulse Polymerized Poly(3,4-ethylenedioxythiophene) Electrodes<br>and Ionic Liquid Gel Polymer Electrolyte. Journal of the Electrochemical Society, 2012, 159, A1664-A1671.                                        | 1.3      | 53        |
| 20 | Electrochemical cell performance studies on all-solid-state battery using nano-composite polymer electrolyte membrane. Ionics, 2007, 13, 295-298.                                                                                                      | 1.2      | 51        |
| 21 | Synthesis and characterization of pulsed polymerized poly(3,4-ethylenedioxythiophene) electrodes for high-performance electrochemical capacitors. Electrochimica Acta, 2013, 87, 158-168.                                                              | 2.6      | 48        |
| 22 | Chemical vapor-deposited carbon nanofibers on carbon fabric for supercapacitor electrode applications. Nanoscale Research Letters, 2012, 7, 651.                                                                                                       | 3.1      | 45        |
| 23 | Advanced Physical Chemistry of Carbon Nanotubes. Annual Review of Physical Chemistry, 2015, 66, 331-356.                                                                                                                                               | 4.8      | 42        |
| 24 | Higher-power supercapacitor electrodes based on mesoporous manganese oxide coating on vertically<br>aligned carbon nanofibers. Nanoscale, 2015, 7, 8485-8494.                                                                                          | 2.8      | 38        |
| 25 | Effective Infiltration of Gel Polymer Electrolyte into Silicon-Coated Vertically Aligned Carbon<br>Nanofibers as Anodes for Solid-State Lithium-Ion Batteries. ACS Applied Materials & Interfaces,<br>2015, 7, 20909-20918.                            | 4.0      | 37        |
| 26 | Anomalous capacity increase at high-rates in lithium-ion battery anodes based on silicon-coated vertically aligned carbon nanofibers. Journal of Power Sources, 2015, 276, 73-79.                                                                      | 4.0      | 30        |
| 27 | Studies on electrical double layer capacitor with a low-viscosity ionic liquid<br>1-ethyl-3-methylimidazolium tetracyanoborate as electrolyte. Bulletin of Materials Science, 2013, 36,<br>729-733.                                                    | 0.8      | 29        |
| 28 | Highly Stable Three Lithium Insertion in Thin V <sub>2</sub> O <sub>5</sub> Shells on Vertically<br>Aligned Carbon Nanofiber Arrays for Ultrahighâ€Capacity Lithium Ion Battery Cathodes. Advanced<br>Materials Interfaces, 2016, 3, 1600824.          | 1.9      | 28        |
| 29 | Experimental investigations on a proton conducting nanocomposite polymer electrolyte. Journal Physics D: Applied Physics, 2008, 41, 055409.                                                                                                            | 1.3      | 26        |
| 30 | A Novel High-Power Battery-Pseudocapacitor Hybrid Based on Fast Lithium Reactions in Silicon Anode<br>and Titanium Dioxide Cathode Coated on Vertically Aligned Carbon Nanofibers. Electrochimica Acta,<br>2015, 178, 797-805.                         | 2.6      | 17        |
| 31 | Self-Organization of Ions at the Interface between Graphene and Ionic Liquid DEME-TFSI. ACS Applied Materials & amp; Interfaces, 2017, 9, 35437-35443.                                                                                                 | 4.0      | 17        |
| 32 | Graphene-Based All-Solid-State Supercapacitor with Ionic Liquid Gel Polymer Electrolyte. Materials<br>Research Society Symposia Proceedings, 2012, 1440, 25.                                                                                           | 0.1      | 16        |
| 33 | Electrical and electrochemical properties of magnesium ion conducting composite gel polymer electrolytes. Journal Physics D: Applied Physics, 2010, 43, 255501.                                                                                        | 1.3      | 12        |
| 34 | Toward highly stable solid-state unconventional thin-film battery-supercapacitor hybrid devices:<br>Interfacing vertical core-shell array electrodes with a gel polymer electrolyte. Journal of Power<br>Sources, 2017, 342, 1006-1016.                | 4.0      | 11        |
| 35 | Disordered Bilayered V <sub>2</sub> O <sub>5</sub> â‹â€‰ <i>n</i> H <sub>2</sub> O Shells Deposited or<br>Vertically Aligned Carbon Nanofiber Arrays as Stable Highâ€Capacity Sodium Ion Battery Cathodes â‹<br>Energy Technology, 2018, 6, 2438-2449. | ו<br>1.8 | 10        |
| 36 | Transport properties and battery discharge characteristics of the Ag+ ion conducting composite electrolyte system (1â^'x)[0.75AgI: 0.25AgCI]: xFe2O3. Ionics, 2004, 10, 113-117.                                                                       | 1.2      | 9         |

GAIND P PANDEY

| #  | Article                                                                                                                                                                                                                  | IF                 | CITATIONS    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|
| 37 | Effects of the catalyst and substrate thickness on the carbon nanotubes/nanofibers as supercapacitor electrodes. Physica Scripta, 2012, 86, 065603.                                                                      | 1.2                | 4            |
| 38 | Probing the relationship of cations-graphene interaction strength with self-organization behaviors<br>of the anions at the interface between graphene and ionic liquids. Applied Surface Science, 2019, 479,<br>576-581. | 3.1                | 3            |
| 39 | Poly(3,4-Ethylenedioxythiophene)-Graphene Composite Electrodes For Solid-State Supercapacitors with Ionic Liquid Gel Polymer Electrolyte. ECS Transactions, 2013, 45, 173-181.                                           | 0.3                | 2            |
| 40 | Facile Synthesis of Uniform Carbon Coated Li2S/rGO cathode for High-Performance Lithium-Sulfur<br>Batteries. MRS Advances, 2018, 3, 3501-3506.                                                                           | 0.5                | 2            |
| 41 | Pulse Polymerized Poly(3,4-ethylenedioxythiophene) Electrodes For Solid-State Supercapacitors with<br>Ionic Liquid Gel Polymer Electrolyte. Materials Research Society Symposia Proceedings, 2012, 1448, 7.              | 0.1                | 1            |
| 42 | High-rate lithium-ion battery anodes based on silicon-coated vertically aligned carbon nanofibers. ,<br>2014, , .                                                                                                        |                    | 1            |
| 43 | Lithium Ion Batteries: Highly Stable Three Lithium Insertion in Thin V2 O5 Shells on Vertically Aligned<br>Carbon Nanofiber Arrays for Ultrahigh-Capacity Lithium Ion Battery Cathodes (Adv. Mater. Interfaces) Tj ETQq1 | 1 0 <b>.7</b> 8431 | 4 rgBT /Over |
| 44 | Nanostructured V2O5/Nitrogen-doped Graphene Hybrids for High Rate Lithium Storage. MRS Advances,<br>2018, 3, 3495-3500.                                                                                                  | 0.5                | 1            |
| 45 | High Performance Tin-coated Vertically Aligned Carbon Nanofiber Array Anode for Lithium-ion<br>Batteries. MRS Advances, 2018, 3, 3519-3524.                                                                              | 0.5                | 1            |
| 46 | Poly(propylene carbonate) Interpenetrating Cross-Linked Poly(ethylene glycol) Based Polymer<br>Electrolyte for Solid-State Lithium Batteries. ECS Transactions, 2018, 85, 53-59.                                         | 0.3                | 1            |
| 47 | CNFs/S1-xSex Composites as Promising Cathode Materials for High-Energy Lithium-Sulfur Batteries.<br>MRS Advances, 2019, 4, 821-828.                                                                                      | 0.5                | 1            |
| 48 | Architectural Design for Flexible Solid-State Batteries. ACS Symposium Series, 0, , 289-309.                                                                                                                             | 0.5                | 1            |
| 49 | Mixtures of Ionic Liquid and Organic Electrolyte with Improved Safety and Electrochemical<br>Performance with Nanostructured Silicon-Anode for Li-Ion Batteries. ECS Meeting Abstracts, 2019, , .                        | 0.0                | 0            |
| 50 | Effect of Titanium Disulfide Cathode Additive in the Performance of Li-S Batteries. ECS Meeting Abstracts, 2019, , .                                                                                                     | 0.0                | 0            |
| 51 | Ceramic-Doped in Cross-Linked Solid Polymer Electrolyte for Solid-State Batteries. ECS Meeting<br>Abstracts, 2020, MA2020-01, 250-250.                                                                                   | 0.0                | 0            |