
Xicheng Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5235302/publications.pdf Version: 2024-02-01

XICHENC LUL

#	Article	IF	CITATIONS
1	An AIE-featured triphenyltin(IV)-triphenylamine acylhydrazone compound and anticancer application. Dyes and Pigments, 2022, 201, 110231.	3.7	7
2	Lysosomal Targeted Cyclometallic Iridium(â¢) Salicylaldehyde-Coumarin Schiff Base Complexes and Anticancer Application. Frontiers in Chemistry, 2022, 10, .	3.6	4
3	Cyclometalated iridium(III) dithioformic acid complexes as mitochondria-targeted imaging and anticancer agents. Journal of Inorganic Biochemistry, 2022, 233, 111855.	3.5	7
4	Preparation and Bioactivity of Iridium(III) Phenanthroline Complexes with Halide Ions and Pyridine Leaving Groups. ChemBioChem, 2021, 22, 557-564.	2.6	4
5	Fluorescence Turnâ€off Magnetic Fluorinated Graphene Composite with High NIR Absorption for Targeted Drug Delivery. ChemNanoMat, 2021, 7, 71-77.	2.8	11
6	Metastable interface biomimetic synthesis of a smart nanosystem for enhanced starvation/gas therapy. Journal of Colloid and Interface Science, 2021, 599, 149-157.	9.4	20
7	Preparation and antitumor application of <i>N</i> -phenylcarbazole/triphenylamine-modified fluorescent half-sandwich iridium(<scp>iii</scp>) Schiff base complexes. Dalton Transactions, 2021, 50, 15888-15899.	3.3	4
8	In Vitro and In Vivo of Triphenylamine-Appended Fluorescent Half-Sandwich Iridium(III) Thiosemicarbazones Antitumor Complexes. Inorganic Chemistry, 2021, 60, 17063-17073.	4.0	14
9	Smart "on-off-on―fluorescent switches for drug visual loading and responsive delivery. Dyes and Pigments, 2020, 173, 107893.	3.7	27
10	Fluorescent COFs with a highly conjugated structure for visual drug loading and responsive release. Chemical Communications, 2020, 56, 519-522.	4.1	55
11	Lysosome-targeted iridium(<scp>iii</scp>) compounds with pyridine-triphenylamine Schiff base ligands: syntheses, antitumor applications and mechanisms. Inorganic Chemistry Frontiers, 2020, 7, 91-100.	6.0	36
12	Dual functions of iridium(III) 2-phenylpyridine complexes: Metastasis inhibition and lysosomal damage. Journal of Inorganic Biochemistry, 2020, 205, 110983.	3.5	17
13	Mesoporous TiO ₂ Spheres as Advanced Anodes for Low-Cost, Safe, and High-Areal-Capacity Lithium-Ion Full Batteries. ACS Applied Nano Materials, 2020, 3, 1019-1027.	5.0	25
14	Preparation and the anticancer mechanism of configuration-controlled Fe(<scp>ii</scp>)–Ir(<scp>iii</scp>) heteronuclear metal complexes. Dalton Transactions, 2020, 49, 12599-12609.	3.3	14
15	Synthesis, structural characterization, and properties of triorganotin complexes of Schiff base derived from 3â€aminobenzoic acid and salicylaldehyde or 2,4â€pentanedione. Applied Organometallic Chemistry, 2020, 34, e5790.	3.5	11
16	Triphenylamine/carbazole-modified ruthenium(<scp>ii</scp>) Schiff base compounds: synthesis, biological activity and organelle targeting. Dalton Transactions, 2020, 49, 8774-8784.	3.3	18
17	Lysosome-targeted chemotherapeutics: Anticancer mechanism of N-heterocyclic carbene iridium(III) complex. Journal of Inorganic Biochemistry, 2020, 207, 111063.	3.5	17
18	Fluorescent iridium(<scp>iii</scp>) coumarin-salicylaldehyde Schiff base compounds as lysosome-targeted antitumor agents. Dalton Transactions, 2020, 49, 5988-5998.	3.3	25

XICHENG LIU

#	Article	IF	CITATIONS
19	Imidazole and Benzimidazole Modified Half-Sandwich IridiumIIIN-Heterocyclic Carbene Complexes: Synthesis, Anticancer Application, and Organelle Targeting. Frontiers in Chemistry, 2020, 8, 182.	3.6	10
20	Half-sandwich Iridium(III) complexes with triphenylamine-substituted dipyridine frameworks and bioactivity applications. Dyes and Pigments, 2019, 160, 217-226.	3.7	29
21	Halfâ€sandwich Ruthenium (II) complexes with triphenylamine modified dipyridine skeleton and application in biology/luminescence imaging. Applied Organometallic Chemistry, 2019, 33, e5171.	3.5	10
22	Triphenylamine-appended cyclometallated iridium(III) complexes: Preparation, photophysical properties and application in biology/luminescence imaging. Journal of Inorganic Biochemistry, 2019, 199, 110757.	3.5	16
23	Ferrocene-Appended Iridium(III) Complexes: Configuration Regulation, Anticancer Application, and Mechanism Research. Inorganic Chemistry, 2019, 58, 14175-14184.	4.0	43
24	Synthesis, structural characterization and cytotoxic activity of triorganotin 5â€(salicylideneamino)salicylates. Applied Organometallic Chemistry, 2019, 33, e4715.	3.5	20
25	Triphenylamine and carbazoleâ€modified iridium ^{III} 2â€phenylpyridine complexes: Synthesis, anticaner application and targeted research . Applied Organometallic Chemistry, 2019, 33, e5053.	3.5	4
26	New Organometallic Tetraphenylethyleneâ‹Iridium(III) Complexes with Antineoplastic Activity. ChemBioChem, 2019, 20, 2767-2776.	2.6	12
27	Serendipitous Synthesis of Five-Coordinated Half-Sandwich Aminoimine Iridium(III) and Ruthenium(II) Complexes and Their Application as Potent Anticancer Agents. Inorganic Chemistry, 2019, 58, 5956-5965.	4.0	18
28	Formal [4 + 2] Annulation of Oxindole-Embedded <i>ortho</i> -Quinone Methides with 1,3-Dicarbonyls: Synthesis of Spiro[Chromen-4,3′-Oxindole] Scaffolds. Journal of Organic Chemistry, 2019, 84, 3990-3999.	3.2	21
29	Highly fluorescent N-doped carbon dots with two-photon emission for ultrasensitive detection of tumor marker and visual monitor anticancer drug loading and delivery. Chemical Engineering Journal, 2019, 356, 994-1002.	12.7	162
30	Half-sandwich iridium(III) complexes with α-picolinic acid frameworks and antitumor applications. Journal of Inorganic Biochemistry, 2019, 192, 52-61.	3.5	31
31	Ferrocenyl–Triphenyltin Complexes as Lysosome-Targeted Imaging and Anticancer Agents. Inorganic Chemistry, 2019, 58, 1710-1718.	4.0	20
32	Dearomative [4+2] Cycloaddition of Oxindoleâ€Embedded <i>ortho</i> â€Quinone Methides with 2,5â€Dialkylfurans. Advanced Synthesis and Catalysis, 2019, 361, 1453-1458.	4.3	17
33	Multifunctional fluorescent PEGylated fluorinated graphene for targeted drug delivery: An experiment and DFT study. Dyes and Pigments, 2019, 162, 573-582.	3.7	60
34	Triphenyltin(IV) acylhydrazone compounds: Synthesis, structure and bioactivity. Journal of Inorganic Biochemistry, 2019, 191, 194-202.	3.5	15
35	Impact of Peripheral Groups on Phenothiazine-Based Hole-Transporting Materials for Perovskite Solar Cells. ACS Energy Letters, 2018, 3, 1145-1152.	17.4	125
36	Triphenylamineâ€Appended Halfâ€Sandwich Iridium(III) Complexes and Their Biological Applications. Chemistry - an Asian Journal, 2018, 13, 1500-1509.	3.3	37

XICHENG LIU

#	Article	IF	CITATIONS
37	[(η5-pentamethylcyclopentadienyl)(3-fluoro-N-methylbenzylamine-Đº1,N)dichlorido]iridium(III). MolBank, 2018, 2018, M999.	0.5	1
38	Hydride transfer initiated ring expansion of pyrrolidines toward highly functionalized tetrahydro-1-benzazepines. Chemical Communications, 2018, 54, 13833-13836.	4.1	57
39	Boosting the Stability of Perovskite Solar Cells through a Dopantâ€Free Tetraphenylbenzidineâ€Based Hole Transporting Material. ChemistrySelect, 2018, 3, 13032-13037.	1.5	6
40	Halfâ€sandwich Iridium(III) Benzimidazoleâ€Appended Imidazoliumâ€Based <i>N</i> â€heterocyclic Carbene Complexes and Antitumor Application. Chemistry - an Asian Journal, 2018, 13, 3697-3705.	3.3	29
41	Half-sandwich IridiumIII N-heterocyclic carbene antitumor complexes and biological applications. Journal of Inorganic Biochemistry, 2018, 189, 163-171.	3.5	31
42	Organocatalytic Dearomative [4 + 2] Cycloadditions of Biomass-Derived 2,5-Dimethylfuran with <i>ortho</i> -Quinone Methides: Access to Multisubstituted Chromanes. Organic Letters, 2018, 20, 6069-6073.	4.6	30
43	Mitochondria-targeted half-sandwich ruthenium ^{II} diimine complexes: anticancer and antimetastasis <i>via</i> ROS-mediated signalling. Inorganic Chemistry Frontiers, 2018, 5, 2100-2105.	6.0	72
44	Imineâ€Nâ€Heterocyclic Carbenes as Versatile Ligands in Ruthenium(II) <i>p</i> ymene Anticancer Complexes: A Structure–Activity Relationship Study. Chemistry - an Asian Journal, 2018, 13, 2923-2933.	3.3	43
45	Novel iridium(III) iminopyridine complexes: synthetic, catalytic, and in vitro anticancer activity studies. Journal of Biological Inorganic Chemistry, 2018, 23, 819-832.	2.6	26
46	Stable Perovskite Solar Cells based on Hydrophobic Triphenylamine Holeâ€Transport Materials. Energy Technology, 2017, 5, 312-320.	3.8	31
47	Dopantâ€Free Holeâ€Transport Material with a Tetraphenylethene Core for Efficient Perovskite Solar Cells. Energy Technology, 2017, 5, 1257-1264.	3.8	19
48	Dopant-free and low-cost molecular "bee―hole-transporting materials for efficient and stable perovskite solar cells. Journal of Materials Chemistry C, 2017, 5, 11429-11435.	5.5	40
49	Over 20% PCE perovskite solar cells with superior stability achieved by novel and low-cost hole-transporting materials. Nano Energy, 2017, 41, 469-475.	16.0	232
50	Fluorinated carbon fiber as a novel nanocarrier for cancer chemo-photothermal therapy. Journal of Materials Chemistry B, 2017, 5, 6128-6137.	5.8	33
51	Dopant-free star-shaped hole-transport materials for efficient and stable perovskite solar cells. Dyes and Pigments, 2017, 136, 273-277.	3.7	83
52	Efficient, Stable, Dopantâ€Free Holeâ€Transport Material with a Triphenylamine Core for CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells. Energy Technology, 2017, 5, 1173-1178.	3.8	25
53	Small molecular hole-transporting and emitting materials for hole-only green organic light-emitting devices. Dyes and Pigments, 2016, 131, 41-48.	3.7	22
54	A novel one-step synthesized and dopant-free hole transport material for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 16330-16334.	10.3	87

XICHENG LIU

#	Article	IF	CITATIONS
55	Dopantâ€Free Donor (D)–π–D–π–D Conjugated Holeâ€Transport Materials for Efficient and Stable Perovskite Solar Cells. ChemSusChem, 2016, 9, 2578-2585.	6.8	83
56	Highly Efficient pâ€iâ€n Perovskite Solar Cells Utilizing Novel Lowâ€Temperature Solutionâ€Processed Hole Transport Materials with Linear Ï€â€Conjugated Structure. Small, 2016, 12, 4902-4908.	10.0	53
57	Film-forming hole transporting materials for high brightness flexible organic light-emitting diodes. Dyes and Pigments, 2016, 125, 36-43.	3.7	13
58	Synthesis of novel s-triazine/carbazole based bipolar molecules and their application in phosphorescent OLEDs. Journal of Materials Science: Materials in Electronics, 2015, 26, 6563-6571.	2.2	4
59	Energy level tuning of TPB-based hole-transporting materials for highly efficient perovskite solar cells. Chemical Communications, 2014, 50, 15239-15242.	4.1	134