Jes Jessen Rasmussen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5235103/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fungicides: An Overlooked Pesticide Class?. Environmental Science & Technology, 2019, 53, 3347-3365.	10.0	374
2	Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nature Ecology and Evolution, 2020, 4, 1060-1068.	7.8	336
3	Thresholds for the Effects of Pesticides on Invertebrate Communities and Leaf Breakdown in Stream Ecosystems. Environmental Science & Technology, 2012, 46, 5134-5142.	10.0	220
4	Temperature and the metabolic balance of streams. Freshwater Biology, 2011, 56, 1106-1121.	2.4	198
5	The legacy of pesticide pollution: An overlooked factor in current risk assessments of freshwater systems. Water Research, 2015, 84, 25-32.	11.3	130
6	Sources, occurrence and predicted aquatic impact of legacy and contemporary pesticides in streams. Environmental Pollution, 2015, 200, 64-76.	7.5	129
7	Modeling global distribution of agricultural insecticides in surface waters. Environmental Pollution, 2015, 198, 54-60.	7.5	100
8	Impacts of pesticides and natural stressors on leaf litter decomposition in agricultural streams. Science of the Total Environment, 2012, 416, 148-155.	8.0	97
9	Specifics and challenges of assessing exposure and effects of pesticides in small water bodies. Hydrobiologia, 2017, 793, 213-224.	2.0	74
10	Networking Our Way to Better Ecosystem Service Provision. Trends in Ecology and Evolution, 2016, 31, 105-115.	8.7	72
11	How to Characterize Chemical Exposure to Predict Ecologic Effects on Aquatic Communities?. Environmental Science & Technology, 2013, 47, 7996-8004.	10.0	71
12	Buffer strip width and agricultural pesticide contamination in Danish lowland streams: Implications for stream and riparian management. Ecological Engineering, 2011, 37, 1990-1997.	3.6	65
13	Stream habitat structure influences macroinvertebrate response to pesticides. Environmental Pollution, 2012, 164, 142-149.	7.5	64
14	A catchment scale evaluation of multiple stressor effects in headwater streams. Science of the Total Environment, 2013, 442, 420-431.	8.0	56
15	Effects of a triazole fungicide and a pyrethroid insecticide on the decomposition of leaves in the presence or absence of macroinvertebrate shredders. Aquatic Toxicology, 2012, 118-119, 54-61.	4.0	54
16	An integrated model for assessing the risk of TCE groundwater contamination to human receptors and surface water ecosystems. Ecological Engineering, 2010, 36, 1126-1137.	3.6	51
17	Stream ecosystem properties and processes along a temperature gradient. Aquatic Ecology, 2011, 45, 231-242.	1.5	47
18	Pyrethroid effects on freshwater invertebrates: A meta-analysis of pulse exposures. Environmental Pollution, 2013, 182, 479-485.	7.5	47

Jes Jessen Rasmussen

#	Article	IF	CITATIONS
19	10 Years Later. Advances in Ecological Research, 2015, 53, 1-53.	2.7	43
20	Integrated assessment of the impact of chemical stressors on surface water ecosystems. Science of the Total Environment, 2012, 427-428, 319-331.	8.0	41
21	Trait Characteristics Determine Pyrethroid Sensitivity in Nonstandard Test Species of Freshwater Macroinvertebrates: A Reality Check. Environmental Science & Technology, 2016, 50, 4971-4978.	10.0	37
22	Impact of lambda-cyhalothrin on a macroinvertebrate assemblage in outdoor experimental channels: Implications for ecosystem functioning. Aquatic Toxicology, 2008, 90, 228-234.	4.0	33
23	Multiple stress response of lowland stream benthic macroinvertebrates depends on habitat type. Science of the Total Environment, 2017, 599-600, 1517-1523.	8.0	32
24	Invasion impacts and dynamics of a Europeanâ€wide introduced species. Global Change Biology, 2022, 28, 4620-4632.	9.5	27
25	Pesticide impacts on predator–prey interactions across two levels of organisation. Aquatic Toxicology, 2013, 140-141, 340-345.	4.0	26
26	Linking Morphology, Toxicokinetic, and Toxicodynamic Traits of Aquatic Invertebrates to Pyrethroid Sensitivity. Environmental Science & Technology, 2020, 54, 5687-5699.	10.0	24
27	Local physical habitat quality cloud the effect of predicted pesticide runoff from agricultural land in Danish streams. Journal of Environmental Monitoring, 2011, 13, 943.	2.1	23
28	Influence of rice field agrochemicals on the ecological status of a tropical stream. Science of the Total Environment, 2016, 542, 12-21.	8.0	22
29	Changing Northern catchments: Is altered hydrology, temperature or both going to shape future stream communities and ecosystem processes?. Hydrological Processes, 2013, 27, 734-740.	2.6	21
30	Linking ecological health to co-occurring organic and inorganic chemical stressors in a groundwater-fed stream system. Science of the Total Environment, 2018, 642, 1153-1162.	8.0	21
31	Seasonal turnover in community composition of streamâ€associated macroinvertebrates inferred from freshwater environmental DNA metabarcoding. Environmental DNA, 2021, 3, 861-876.	5.8	19
32	Evaluating effects of weed cutting on water level and ecological status in Danish lowland streams. Freshwater Biology, 2018, 63, 652-661.	2.4	18
33	Headwater streams in the EU Water Framework Directive: Evidence-based decision support to select streams for river basin management plans. Science of the Total Environment, 2018, 613-614, 1048-1054.	8.0	18
34	Legacy of a Chemical Factory Site: Contaminated Groundwater Impacts Stream Macroinvertebrates. Archives of Environmental Contamination and Toxicology, 2016, 70, 219-230.	4.1	16
35	Seasonal sensitivity of Gammarus pulex towards the pyrethroid cypermethrin. Chemosphere, 2018, 200, 632-640.	8.2	16
36	The future of European water management: Demonstration of a new WFD compliant framework to support sustainable management under multiple stress. Science of the Total Environment, 2019, 654, 53-59.	8.0	13

Jes Jessen Rasmussen

#	Article	IF	CITATIONS
37	Realistic pesticide exposure through water and food amplifies long-term effects in a Limnephilid caddisfly. Science of the Total Environment, 2017, 580, 1439-1445.	8.0	11
38	Identifying potential gaps in pesticide risk assessment: Terrestrial life stages of freshwater insects. Journal of Applied Ecology, 2018, 55, 1510-1515.	4.0	11
39	Going with the flow: Planktonic processing of dissolved organic carbon in streams. Science of the Total Environment, 2018, 625, 519-530.	8.0	10
40	Effects of low flow and co-occurring stressors on structural and functional characteristics of the benthic biofilm in small streams. Science of the Total Environment, 2020, 733, 139331.	8.0	10
41	Suspended particles only marginally reduce pyrethroid toxicity to the freshwater invertebrate Gammarus pulex (L.) during pulse exposure. Ecotoxicology, 2016, 25, 510-520.	2.4	9
42	Multiple exposure routes of a pesticide exacerbate effects on a grazing mayfly. Aquatic Toxicology, 2016, 178, 190-196.	4.0	8
43	Effects of different weed cutting methods on physical and hydromorphological conditions in lowland streams. Knowledge and Management of Aquatic Ecosystems, 2021, , 10.	1.1	8
44	Low Dose Effects of Pesticides in the Aquatic Environment. ACS Symposium Series, 2017, , 167-187.	0.5	7
45	Suspended matter and associated contaminants in Danish streams: a national analysis. Journal of Soils and Sediments, 2019, 19, 3068-3082.	3.0	5
46	Repeated insecticide pulses increase harmful effects on stream macroinvertebrate biodiversity and function. Environmental Pollution, 2021, 273, 116404.	7.5	5
47	Similar recovery time of microbial functions from fungicide stress across biogeographical regions. Scientific Reports, 2018, 8, 17021.	3.3	4
48	Terrestrial adult stages of freshwater insects are sensitive to insecticides. Chemosphere, 2020, 239, 124799.	8.2	4
49	Pesticide risk indicator for terrestrial adult stages of aquatic insects. Ecological Indicators, 2020, 118, 106718.	6.3	4
50	Vulnerability of Aquatic Insect Species to Insecticides, Depending on Their Flight Period and Adult Life Span. Environmental Toxicology and Chemistry, 2021, 40, 1778-1787.	4.3	3
51	Dead or alive — Old empty shells do not prompt falseâ€positive results in environmental DNA surveys targeting the freshwater pearl mussel (<scp><i>Margaritifera margaritifera</i></scp> L.). Aquatic	2.0	3