David Goodsell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5235054/publications.pdf

Version: 2024-02-01

254 papers

47,077 citations

54 h-index 208 g-index

264 all docs

264 docs citations

times ranked

264

48080 citing authors

#	Article	IF	CITATIONS
1	Evolution of the <scp>SARSâ€CoV</scp> â€2 proteome in three dimensions (3D) during the first 6 months of the <scp>COVID</scp> â€19 pandemic. Proteins: Structure, Function and Bioinformatics, 2022, 90, 1054-1080.	1.5	31
2	<scp>RCSB</scp> Protein Data Bank: Celebrating 50 years of the <scp>PDB</scp> with new tools for understanding and visualizing biological macromolecules in <scp>3D</scp> . Protein Science, 2022, 31, 187-208.	3.1	84
3	<scp>PDB</scp> â€101: Educational resources supporting molecular explorations through biology and medicine. Protein Science, 2022, 31, 129-140.	3.1	43
4	RCSB Protein Data Bank resources for structure-facilitated design of mRNA vaccines for existing and emerging viral pathogens. Structure, 2022, 30, 55-68.e2.	1.6	10
5	Building Structural Models of a Whole Mycoplasma Cell. Journal of Molecular Biology, 2022, 434, 167351.	2.0	40
6	Integrative illustration of a JCVI-syn3A minimal cell. Journal of Integrative Bioinformatics, 2022, 19, .	1.0	6
7	Exploring protein symmetry at the RCSB Protein Data Bank. Emerging Topics in Life Sciences, 2022, 6, 231-243.	1.1	7
8	<i>Modeling in the Time of COVID-19:</i> Statistical and Rule-based Mesoscale Models. IEEE Transactions on Visualization and Computer Graphics, 2021, 27, 722-732.	2.9	20
9	The <scp>AutoDock</scp> suite at 30. Protein Science, 2021, 30, 31-43.	3.1	85
10	Seeing the PDB. Journal of Biological Chemistry, 2021, 296, 100742.	1.6	13
11	CellPAINT: Turnkey Illustration of Molecular Cell Biology. Frontiers in Bioinformatics, 2021, 1, .	1.0	20
12	Molecular storytelling for online structural biology outreach and education. Structural Dynamics, 2021, 8, 020401.	0.9	7
13	Art as a tool for science. Nature Structural and Molecular Biology, 2021, 28, 402-403.	3.6	7
14	Moltemplate: A Tool for Coarse-Grained Modeling of Complex Biological Matter and Soft Condensed Matter Physics. Journal of Molecular Biology, 2021, 433, 166841.	2.0	189
15	Picturing science: using art and imagination to explore new worlds. Biochemist, 2021, 43, 32-38.	0.2	1
16	RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Research, 2021, 49, D437-D451.	6.5	918
17	RCSB Protein Data Bank: Enabling biomedical research and drug discovery. Protein Science, 2020, 29, 52-65.	3.1	223
18	RCSB Protein Data Bank tools for 3D structure-guided cancer research: human papillomavirus (HPV) case study. Oncogene, 2020, 39, 6623-6632.	2.6	6

#	Article	IF	CITATIONS
19	Integrative illustration for coronavirus outreach. PLoS Biology, 2020, 18, e3000815.	2.6	18
20	Selective and Effective: Current Progress in Computational Structure-Based Drug Discovery of Targeted Covalent Inhibitors. Trends in Pharmacological Sciences, 2020, 41, 1038-1049.	4.0	17
21	Art and Science of the Cellular Mesoscale. Trends in Biochemical Sciences, 2020, 45, 472-483.	3.7	36
22	Insights from 20 years of the Molecule of the Month. Biochemistry and Molecular Biology Education, 2020, 48, 350-355.	0.5	16
23	Impact of the Protein Data Bank Across Scientific Disciplines. Data Science Journal, 2020, 19, 25.	0.6	17
24	Molecular storytelling for structural biology outreach and education. Acta Crystallographica Section A: Foundations and Advances, 2020, 76, a9-a9.	0.0	0
25	Insights from 20 Years of the Molecule of the Month and PDBâ€101. FASEB Journal, 2020, 34, 1-1.	0.2	0
26	Lateâ€onset retinal degeneration pathology due to mutations in CTRP5 is mediated through HTRA1. Aging Cell, 2019, 18, e13011.	3.0	24
27	Cuttlefish: Color Mapping for Dynamic Multiâ€Scale Visualizations. Computer Graphics Forum, 2019, 38, 150-164.	1.8	11
28	Illustrate: Software for Biomolecular Illustration. Structure, 2019, 27, 1716-1720.e1.	1.6	87
29	Integrative modeling of the HIV-1 ribonucleoprotein complex. PLoS Computational Biology, 2019, 15, e1007150.	1.5	4
30	Scientific Delirium Madness 5.0: Gallery. Leonardo, 2019, 52, 220-229.	0.2	1
31	Novel Intersubunit Interaction Critical for HIV-1 Core Assembly Defines a Potentially Targetable Inhibitor Binding Pocket. MBio, 2019, 10, .	1.8	13
32	Parallel Generation and Visualization of Bacterial Genome Structures. Computer Graphics Forum, 2019, 38, 57-68.	1.8	6
33	Protein Data Bank: the single global archive for 3D macromolecular structure data. Nucleic Acids Research, 2019, 47, D520-D528.	6.5	671
34	RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic Acids Research, 2019, 47, D464-D474.	6.5	918
35	Labels on Levels: Labeling of Multi-Scale Multi-Instance and Crowded 3D Biological Environments. IEEE Transactions on Visualization and Computer Graphics, 2019, 25, 977-986.	2.9	16
36	Symmetry at the Cellular Mesoscale. Symmetry, 2019, 11, 1170.	1.1	4

#	Article	IF	Citations
37	Integrative Modeling and Visualization of Exosomes. The Journal of Biocommunication, 2019, 43, .	0.1	3
38	Exploring biology and medicine using 3D biomacromolecules with PDB-101. Acta Crystallographica Section A: Foundations and Advances, 2019, 75, a26-a26.	0.0	0
39	Instant Construction and Visualization of Crowded Biological Environments. IEEE Transactions on Visualization and Computer Graphics, 2018, 24, 862-872.	2.9	36
40	Lattice Models of Bacterial Nucleoids. Journal of Physical Chemistry B, 2018, 122, 5441-5447.	1.2	23
41	CellPAINT: Interactive Illustration of Dynamic Mesoscale Cellular Environments. IEEE Computer Graphics and Applications, 2018, 38, 51-66.	1.0	33
42	Molecular Illustration in Research and Education: Past, Present, and Future. Journal of Molecular Biology, 2018, 430, 3969-3981.	2.0	52
43	From Atoms to Cells: Using Mesoscale Landscapes to Construct Visual Narratives. Journal of Molecular Biology, 2018, 430, 3954-3968.	2.0	31
44	OUP accepted manuscript. Nucleic Acids Research, 2017, 45, D271-D281.	6.5	619
45	A visual review of the human pathogen Streptococcus pneumoniae. FEMS Microbiology Reviews, 2017, 41, 854-879.	3.9	72
46	PDB-101: educational portal for molecular explorations through biology and medicine. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C670-C670.	0.0	0
47	Fragment-Based Analysis of Ligand Dockings Improves Classification of Actives. Journal of Chemical Information and Modeling, 2016, 56, 1597-1607.	2.5	4
48	Covalent docking using autodock: Twoâ€point attractor and flexible side chain methods. Protein Science, 2016, 25, 295-301.	3.1	170
49	Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nature Protocols, 2016, 11, 905-919.	5.5	1,370
50	Visibility Equalizer Cutaway Visualization of Mesoscopic Biological Models. Computer Graphics Forum, 2016, 35, 161-170.	1.8	13
51	Atomic Evidence. , 2016, , .		11
52	RCSB Protein Data Bank: A Resource for Chemical, Biochemical, and Structural Explorations of Large and Small Biomolecules. Journal of Chemical Education, 2016, 93, 569-575.	1.1	66
53	Chameleon: Dynamic Color Mapping for Multi-Scale Structural Biology Models. Eurographics Workshop on Visual Computing for Biomedicine, 2016, 2016, .	4.0	3
54	AutoDockFR: Advances in Protein-Ligand Docking with Explicitly Specified Binding Site Flexibility. PLoS Computational Biology, 2015, 11, e1004586.	1.5	287

#	Article	IF	CITATIONS
55	Illustrations of the HIV Life Cycle. Current Topics in Microbiology and Immunology, 2015, 389, 243-252.	0.7	25
56	The RCSB PDB "Molecule of the Month― Inspiring a Molecular View of Biology. PLoS Biology, 2015, 13, e1002140.	2.6	88
57	The RCSB Protein Data Bank: views of structural biology for basic and applied research and education. Nucleic Acids Research, 2015, 43, D345-D356.	6.5	461
58	cellPACK: a virtual mesoscope to model and visualize structural systems biology. Nature Methods, 2015, 12, 85-91.	9.0	130
59	3D molecular models of whole HIV-1 virions generated with cellPACK. Faraday Discussions, 2014, 169, 23-44.	1.6	52
60	Visualising microorganisms from molecules to cells. FEMS Microbiology Letters, 2014, 356, 1-7.	0.7	0
61	Protein structure in context: The molecular landscape of angiogenesis. Biochemistry and Molecular Biology Education, 2013, 41, 213-223.	0.5	6
62	The Effects of the SUN Project on Teacher Knowledge and Self-Efficacy Regarding Biological Energy Transfer Are Significant and Long-Lasting: Results of a Randomized Controlled Trial. CBE Life Sciences Education, 2013, 12, 287-305.	1.1	4
63	Revealing structural views of biology. Biopolymers, 2013, 99, 817-824.	1.2	4
64	Protein Structure in Context: The Landscape of Angiogenesis. FASEB Journal, 2013, 27, 1031.10.	0.2	0
65	The RCSB Protein Data Bank: new resources for research and education. Nucleic Acids Research, 2012, 41, D475-D482.	6.5	418
66	Protein Flexibility in Virtual Screening: The BACE-1 Case Study. Journal of Chemical Information and Modeling, 2012, 52, 2697-2704.	2.5	47
67	<i>Illustrating the machinery of life</i> : Viruses. Biochemistry and Molecular Biology Education, 2012, 40, 291-296.	0.5	8
68	Putting proteins in context. BioEssays, 2012, 34, 718-720.	1.2	4
69	ePMV Embeds Molecular Modeling into Professional Animation Software Environments. Structure, 2011, 19, 293-303.	1.6	82
70	The evolution of the RCSB Protein Data Bank website. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2011, 1, 782-789.	6.2	7
71	Redoxâ€Based Probes for Protein Tyrosine Phosphatases. Angewandte Chemie - International Edition, 2011, 50, 4423-4427.	7.2	48
72	Eukaryotic cell panorama. Biochemistry and Molecular Biology Education, 2011, 39, 91-101.	0.5	22

#	Article	IF	CITATIONS
73	Atomic Evidence: The Foundations of Structural Molecular Biology. Science Progress, 2011, 94, 414-430.	1.0	1
74	The RCSB Protein Data Bank: redesigned web site and web services. Nucleic Acids Research, 2011, 39, D392-D401.	6.5	549
75	The RCSB Protein Data Bank: site functionality and bioinformatics use cases. NCI Nature Pathway Interaction Database, 2011, , .	0.3	2
76	Mitochondrion. Biochemistry and Molecular Biology Education, 2010, 38, 134-140.	0.5	9
77	Promoting a structural view of biology for varied audiences: an overview of RCSB PDB resources and experiences. Journal of Applied Crystallography, 2010, 43, 1224-1229.	1.9	41
78	Visualization of macromolecular structures. Nature Methods, 2010, 7, S42-S55.	9.0	137
79	Visualizing biological data—now and in the future. Nature Methods, 2010, 7, S2-S4.	9.0	115
80	Artophagy: The Art of Autophagy-the Cvt pathway. Autophagy, 2010, 6, 3-6.	4.3	13
81	Virtual screening with AutoDock: theory and practice. Expert Opinion on Drug Discovery, 2010, 5, 597-607.	2.5	462
82	Fact and Fantasy in Nanotech Imagery. Leonardo, 2009, 42, 52-57.	0.2	9
83	AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 2009, 30, 2785-2791.	1.5	16,850
84	Neuromuscular synapse. Biochemistry and Molecular Biology Education, 2009, 37, 204-210.	0.5	11
85	Escherichia coli. Biochemistry and Molecular Biology Education, 2009, 37, 325-332.	0.5	28
86	The Machinery of Life. , 2009, , .		156
87	Computational Docking of Biomolecular Complexes with AutoDock. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5200.	0.2	33
88	Automated prediction of ligandâ€binding sites in proteins. Proteins: Structure, Function and Bioinformatics, 2008, 70, 1506-1517.	1.5	134
89	Empirical entropic contributions in computational docking: Evaluation in APS reductase complexes. Journal of Computational Chemistry, 2008, 29, 1753-1761.	1.5	34
90	Structure-Based Virtual Screening and Biological Evaluation of ⟨i⟩Mycobacterium tuberculosis⟨ i⟩ Adenosine 5′-Phosphosulfate Reductase Inhibitors. Journal of Medicinal Chemistry, 2008, 51, 6627-6630.	2.9	32

#	Article	IF	Citations
91	Identification of novel βâ€secretase inhibitors through the inclusion of protein flexibility in virtual screening calculations. FASEB Journal, 2008, 22, 791.8.	0.2	1
92	The Molecular Perspective: Hepatitis B Virus. Oncologist, 2007, 12, 516-517.	1.9	3
93	Filling in the Gaps: Artistic License in Education and Outreach. PLoS Biology, 2007, 5, e308.	2.6	38
94	A semiempirical free energy force field with charge-based desolvation. Journal of Computational Chemistry, 2007, 28, 1145-1152.	1.5	1,854
95	Making the step from chemistry to biology and back. Nature Chemical Biology, 2007, 3, 681-684.	3.9	4
96	Active Teaching and Tactile Learning: A Role for Physical Models of Molecular Structures. FASEB Journal, 2007, 21, A297.	0.2	0
97	Seeing the nanoscale. Nano Today, 2006, 1, 44-49.	6.2	285
98	The Molecular Perspective: c-Abl Tyrosine Kinase. Stem Cells, 2006, 24, 209-210.	1.4	2
99	The Molecular Perspective: Cisplatin. Stem Cells, 2006, 24, 514-515.	1.4	35
100	Tactile teaching: Exploring protein structure/function using physical models. Biochemistry and Molecular Biology Education, 2006, 34, 247-254.	0.5	77
101	Recognition highlights: Toll-like receptors. Journal of Molecular Recognition, 2006, 19, 387-388.	1.1	0
102	The Molecular Perspective: Cisplatin. Oncologist, 2006, 11, 316-317.	1.9	27
103	The Molecular Perspective: Tumor Necrosis Factor. Oncologist, 2006, 11, 83-84.	1.9	12
104	The Molecular Perspective: Tissue Factor. Oncologist, 2006, 11, 849-850.	1.9	6
105	The Molecular Perspective: Alcohol. Oncologist, 2006, 11, 1045-1046.	1.9	7
106	The Molecular Perspective: Estrogen Sulfotransferase. Oncologist, 2006, 11, 418-419.	1.9	7
107	Using physical models of proteins to tell molecular stories of researchâ€based health care. FASEB Journal, 2006, 20, A976.	0.2	0
108	Representing Structural Information with RasMol. Current Protocols in Bioinformatics, 2005, 11, Unit 5.4.	25.8	23

#	Article	IF	CITATIONS
109	The Molecular Perspective: Morphine. Stem Cells, 2005, 23, 144-145.	1.4	6
110	The Molecular Perspective: Major Histocompatibility Complex. Stem Cells, 2005, 23, 454-455.	1.4	3
111	The Molecular Perspective: l-Asparaginase. Stem Cells, 2005, 23, 710-711.	1.4	3
112	The Molecular Perspective: Double-Stranded DNA Breaks. Stem Cells, 2005, 23, 1021-1022.	1.4	3
113	The Molecular Perspective: RAD51 and BRCA2. Stem Cells, 2005, 23, 1434-1435.	1.4	1
114	Visual Methods from Atoms to Cells. Structure, 2005, 13, 347-354.	1.6	46
115	Recognition in action: flipping pyrimidine dimers. Journal of Molecular Recognition, 2005, 18, 193-195.	1.1	3
116	Recognition in action: DNA mimicry. Journal of Molecular Recognition, 2005, 18, 427-430.	1.1	4
117	1,2,3-Triazole as a Peptide Surrogate in the Rapid Synthesis of HIV-1 Protease Inhibitors. ChemBioChem, 2005, 6, 1167-1169.	1.3	262
118	The Molecular Perspective: Doubleâ€Stranded DNA Breaks. Oncologist, 2005, 10, 361-362.	1.9	11
119	Identifying Protein Binding Sites and Optimal Ligands. Letters in Drug Design and Discovery, 2005, 2, 483-489.	0.4	4
120	The Molecular Perspective: RAD51 and BRCA2. Oncologist, 2005, 10, 555-556.	1.9	0
121	The Molecular Perspective: câ€Abl Tyrosine Kinase. Oncologist, 2005, 10, 758-759.	1.9	2
122	The Molecular Perspective: I â€Asparaginase. Oncologist, 2005, 10, 238-239.	1.9	11
123	The cAMP binding domain: An ancient signaling module. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 45-50.	3.3	190
124	The Molecular Perspective: Major Histocompatibility Complex. Oncologist, 2005, 10, 80-81.	1.9	2
125	The Molecular Perspective: Cyclins. Oncologist, 2004, 9, 592-593.	1.9	0
126	The Molecular Perspective: Nicotine and Nitrosamines. Oncologist, 2004, 9, 353-354.	1.9	6

#	Article	IF	CITATIONS
127	The Molecular Perspective: Polycyclic Aromatic Hydrocarbons. Oncologist, 2004, 9, 469-470.	1.9	1
128	Grid-Based Hydrogen Bond Potentials with Improved Directionality. Letters in Drug Design and Discovery, 2004, 1, 178-183.	0.4	38
129	The Molecular Perspective: Morphine. Oncologist, 2004, 9, 717-718.	1.9	10
130	The Molecular Perspective: DNA Polymerase. Oncologist, 2004, 9, 108-109.	1.9	4
131	The Molecular Perspective: Cytochrome c and Apoptosis. Oncologist, 2004, 9, 226-227.	1.9	27
132	The Molecular Perspective: Protein Farnesyltransferase. Stem Cells, 2004, 22, 119-120.	1.4	2
133	The Molecular Perspective: DNA Polymerase. Stem Cells, 2004, 22, 236-237.	1.4	1
134	The Molecular Perspective: Cytochrome c and Apoptosis. Stem Cells, 2004, 22, 428-429.	1.4	10
135	The Molecular Perspective: Nicotine and Nitrosamines. Stem Cells, 2004, 22, 645-646.	1.4	3
136	The Molecular Perspective: Polycyclic Aromatic Hydrocarbons. Stem Cells, 2004, 22, 873-874.	1.4	3
137	The Molecular Perspective: Cyclins. Stem Cells, 2004, 22, 1121-1122.	1.4	0
138	Automated docking of ligands to an artificial active site: augmenting crystallographic analysis with computer modeling. Journal of Computer-Aided Molecular Design, 2003, 17, 525-536.	1.3	81
139	The Molecular Perspective: VEGF and Angiogenesis. Stem Cells, 2003, 21, 118-119.	1.4	37
140	The Molecular Perspective: Ubiquitin and the Proteosome. Stem Cells, 2003, 21, 509-510.	1.4	1
141	The Molecular Perspective: Histone Deacetylase. Stem Cells, 2003, 21, 620-621.	1.4	7
142	The Molecular Perspective: Epidermal Growth Factor. Stem Cells, 2003, 21, 702-703.	1.4	8
143	Rapid Diversity-Oriented Synthesis in Microtiter Plates for In Situ Screening of HIV Protease Inhibitors. ChemBioChem, 2003, 4, 1246-1248.	1.3	134
144	Looking at Molecules-An Essay on Art and Science. ChemBioChem, 2003, 4, 1293-1297.	1.3	6

#	Article	IF	Citations
145	The Molecular Perspective: Histone Deacetylase. Oncologist, 2003, 8, 389-391.	1.9	5
146	The Molecular Perspective: Epidermal Growth Factor. Oncologist, 2003, 8, 496-497.	1.9	19
147	The Molecular Perspective: Ubiquitin and the Proteosome. Oncologist, 2003, 8, 293-294.	1.9	2
148	The Molecular Perspective: Protein Farnesyltransferase. Oncologist, 2003, 8, 597-598.	1.9	2
149	BioEditor-simplifying macromolecular structure annotation. Bioinformatics, 2003, 19, 897-898.	1.8	20
150	The Molecular Perspective: Restriction Endonucleases. Oncologist, 2002, 7, 82-83.	1.9	4
151	The Molecular Perspective: Cadherin. Oncologist, 2002, 7, 467-468.	1.9	11
152	The Molecular Perspective: Bclâ€⊋ and Apoptosis. Oncologist, 2002, 7, 259-260.	1.9	14
153	The Molecular Perspective: Tamoxifen and the Estrogen Receptor. Oncologist, 2002, 7, 163-164.	1.9	26
154	The Molecular Perspective: DNA Topoisomerases. Oncologist, 2002, 7, 381-382.	1.9	2
155	The Molecular Perspective: VEGF and Angiogenesis. Oncologist, 2002, 7, 569-570.	1.9	33
156	Automated docking to multiple target structures: Incorporation of protein mobility and structural water heterogeneity in AutoDock. Proteins: Structure, Function and Bioinformatics, 2002, 46, 34-40.	1.5	394
157	Evolutionary analysis of HIV-1 protease inhibitors: Methods for design of inhibitors that evade resistance. Proteins: Structure, Function and Bioinformatics, 2002, 48, 63-74.	1.5	17
158	The Molecular Perspective: Antibodies. Stem Cells, 2002, 20, 94-95.	1.4	1
159	The Molecular Perspective: Restriction Endonucleases. Stem Cells, 2002, 20, 190-191.	1.4	4
160	The Molecular Perspective: Tamoxifen and the Estrogen Receptor. Stem Cells, 2002, 20, 267-268.	1.4	13
161	The Molecular Perspective: Bcl-2 and Apoptosis. Stem Cells, 2002, 20, 355-356.	1.4	28
162	The Molecular Perspective: DNA Topoisomerases. Stem Cells, 2002, 20, 470-471.	1.4	9

#	Article	IF	CITATIONS
163	The Molecular Perspective: Cadherin. Stem Cells, 2002, 20, 583-584.	1.4	9
164	A hierarchical model of HIV-1 protease drug resistance. Applied Bioinformatics, 2002, 1, 3-12.	1.7	2
165	The Molecular Perspective: The Ribosome. Stem Cells, 2001, 19, 92-93.	1.4	0
166	Recognition templates for predicting adenylate-binding sites in proteins. Journal of Molecular Biology, 2001, 314, 1245-1255.	2.0	16
167	Analysis of a data set of paired uncomplexed protein structures: New metrics for side-chain flexibility and model evaluation. Proteins: Structure, Function and Bioinformatics, 2001, 43, 271-279.	1.5	50
168	The Molecular Perspective: Targeted Toxins. Stem Cells, 2001, 19, 161-162.	1.4	0
169	The Molecular Perspective: Cytochrome P450. Stem Cells, 2001, 19, 263-264.	1.4	1
170	The Molecular Perspective: Ultraviolet Light and Pyrimidine Dimers. Stem Cells, 2001, 19, 348-349.	1.4	35
171	The Molecular Perspective: Interferons. Stem Cells, 2001, 19, 467-468.	1.4	0
172	The Molecular Perspective: ThesrcOncogene. Stem Cells, 2001, 19, 553-555.	1.4	1
173	The Molecular Perspective: Cytochrome P450. Oncologist, 2001, 6, 205-206.	1.9	4
174	The Molecular Perspective: Interferons. Oncologist, 2001, 6, 374-375.	1.9	2
175	The Molecular Perspective: Ultraviolet Light and Pyrimidine Dimers. Oncologist, 2001, 6, 298-299.	1.9	70
176	The Molecular Perspective: The src Oncogene. Oncologist, 2001, 6, 474-476.	1.9	2
177	The Molecular Perspective: Targeted Toxins. Oncologist, 2001, 6, 110-111.	1.9	0
178	The Molecular Perspective: Antibodies. Oncologist, 2001, 6, 547-548.	1.9	4
179	Sequence Recognition of DNA by Lexitropsins. Current Medicinal Chemistry, 2001, 8, 509-516.	1,2	21
180	A Study on Docking Mode of HIV Protease and Their Inhibitors Journal of Chemical Software, 2001, 7, 103-114.	0.2	9

#	Article	IF	CITATIONS
181	Structural Symmetry and Protein Function. Annual Review of Biophysics and Biomolecular Structure, 2000, 29, 105-153.	18.3	806
182	The Molecular Perspective: Cyclooxygenase-2. Stem Cells, 2000, 18, 227-229.	1.4	6
183	The Molecular Perspective: The Ribosome. Oncologist, 2000, 5, 508-509.	1.9	О
184	The Molecular Perspective: Caspases. Oncologist, 2000, 5, 435-436.	1.9	11
185	The Molecular Perspective: DNA. Oncologist, 2000, 5, 81-82.	1.9	O
186	The Molecular Perspective: Microtubules and the Taxanes. Oncologist, 2000, 5, 345-346.	1.9	7
187	The Molecular Perspective: Simian Virus 40. Oncologist, 2000, 5, 260-262.	1.9	2
188	The Molecular Perspective: Cyclooxygenaseâ€2. Oncologist, 2000, 5, 169-171.	1.9	16
189	The Molecular Perspective: Matrix Metalloproteinase 2. Stem Cells, 2000, 18, 73-75.	1.4	3
190	The Molecular Perspective: DNA. Stem Cells, 2000, 18, 148-149.	1.4	5
191	The Molecular Perspective: Simian Virus 40. Stem Cells, 2000, 18, 301-303.	1.4	2
192	The Molecular Perspective: Microtubules and the Taxanes. Stem Cells, 2000, 18, 382-383.	1.4	4
193	The Molecular Perspective: Caspases. Stem Cells, 2000, 18, 457-458.	1.4	11
194	The art of molecular graphics. Journal of Molecular Graphics and Modelling, 2000, 18, 173.	1.3	0
195	The Molecular Perspective: Methotrexate. Oncologist, 1999, 4, 340-341.	1.9	43
196	Coevolutionary analysis of resistance-evading peptidomimetic inhibitors of HIV-1 protease. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 1369-1374.	3.3	14
197	The Molecular Perspective: p53 Tumor Suppressor. Stem Cells, 1999, 17, 189-190.	1.4	7
198	The Molecular Perspective: The <i>ras</i> Oncogene. Stem Cells, 1999, 17, 235-236.	1.4	49

#	Article	IF	CITATIONS
199	The Molecular Perspective: Methotrexate. Stem Cells, 1999, 17, 314-315.	1.4	29
200	Docking of 4-oxalocrotonate tautomerase substrates: Implications for the catalytic mechanism., 1999, 50, 319-328.		26
201	Coevolution and subsite decomposition for the design of resistance-evading HIV-1 protease inhibitors 1 1Edited by F. E. Cohen. Journal of Molecular Biology, 1999, 287, 77-92.	2.0	13
202	Atomistic vs. Continuous Representations in Molecular Biology. , 1999, , 146-155.		4
203	The Molecular Perspective: p53 Tumor Suppressor. Oncologist, 1999, 4, 138-139.	1.9	11
204	The Molecular Perspective: The <i>ras</i> Oncogene. Oncologist, 1999, 4, 263-264.	1.9	91
205	The Molecular Perspective: The Multidrug Transporter. Oncologist, 1999, 4, 428-429.	1.9	2
206	The Molecular Perspective: Matrix Metalloproteinase 2. Oncologist, 1999, 4, 509-511.	1.9	3
207	The molecular perspective: p53 tumor suppressor. Oncologist, 1999, 4, 138-9.	1.9	7
208	The molecular perspective: the ras oncogene. Oncologist, 1999, 4, 263-4.	1.9	45
209	The molecular perspective: methotrexate. Oncologist, 1999, 4, 340-1.	1.9	21
210	The molecular perspective: the multidrug transporter. Oncologist, 1999, 4, 428-9.	1.9	0
211	The molecular perspective: matrix metalloproteinase 2. Oncologist, 1999, 4, 509-11.	1.9	0
212	Morphology of protein–protein interfaces. Structure, 1998, 6, 421-427.	1.6	218
213	Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 1998, 19, 1639-1662.	1.5	8,897
214	Interactive modeling of supramolecular assemblies. Journal of Molecular Graphics and Modelling, 1998, 16, 115-120.	1.3	7
215	Automated Docking and the Search for HIV Protease Inhibitors. SAR and QSAR in Environmental Research, 1998, 8, 273-285.	1.0	24
216	An Analysis of a Class of DNA Sequence Reading Molecules. Journal of Computational Biology, 1998, 5, 571-583.	0.8	1

#	Article	IF	CITATIONS
217	The theoretical limits of DNA sequence discrimination by linked polyamides. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 4315-4320.	3.3	7
218	Estimation of the DNA sequence discriminatory ability of hairpin-linked lexitropsins. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 5634-5639.	3.3	21
219	Defining GC-specificity in the minor groove: side-by-side binding of the di-imidazole lexitropsin to C-A-T-G-G-C-C-A-T-G. Structure, 1997, 5, 1033-1046.	1.6	109
220	Design of stapled DNA-minor-groove-binding molecules with a mutable atom simulated annealing method. Journal of Computer-Aided Molecular Design, 1997, 11, 539-546.	1.3	3
221	The art of molecular graphics Irving Geis: Dean of molecular illustration. Journal of Molecular Graphics and Modelling, 1997, 15, 57-59.	1.3	3
222	Progress in the design of DNA sequence-specific lexitropsins. , 1997, 44, 323-334.		28
223	Chapter 7 Molecules in living cells. Principles of Medical Biology, 1996, , 173-180.	0.1	0
224	Automated docking of flexible ligands: Applications of autodock. Journal of Molecular Recognition, 1996, 9, 1-5.	1.1	1,284
225	Distributed automated docking of flexible ligands to proteins: Parallel applications of AutoDock 2.4. Journal of Computer-Aided Molecular Design, 1996, 10, 293-304.	1.3	907
226	Automated docking of flexible ligands: Applications of autodock. , 1996, 9, 1.		7
227	Design of B-DNA cross-linking and sequence-reading molecules. Biopolymers, 1995, 35, 543-553.	1.2	15
228	Crystal Structure of C-T-C-T-C-G-A-G. Implications for the Structure of the Holliday Junction. Biochemistry, 1995, 34, 1022-1029.	1.2	62
229	Structure of a dicationic monoimidazole lexitropsin bound to DNA. Biochemistry, 1995, 34, 16654-16661.	1.2	31
230	Refinement of Netropsin Bound to DNA: Bias and Feedback in Electron Density Map Interpretation. Biochemistry, 1995, 34, 4983-4993.	1.2	86
231	Crystal Structure of a Covalent DNA-Drug Adduct: Anthramycin Bound to C-C-A-A-C-G-T-T-G-G and a Molecular Explanation of Specificity. Biochemistry, 1994, 33, 13593-13610.	1.2	115
232	The Crystal Structure of C-C-A-T-T-A-A-T-G-G. Journal of Molecular Biology, 1994, 239, 79-96.	2.0	149
233	Bending and curvature calculations in B-DNA. Nucleic Acids Research, 1994, 22, 5497-5503.	6.5	284
234	Automated docking in crystallography: Analysis of the substrates of aconitase. Proteins: Structure, Function and Bioinformatics, 1993, 17, 1-10.	1.5	84

#	Article	IF	CITATIONS
235	Soluble proteins: Size, shape and function. Trends in Biochemical Sciences, 1993, 18, 65-68.	3.7	92
236	Crystallographic analysis of C-C-A-A-G-C-T-T-G-G and its implications for bending in B-DNA. Biochemistry, 1993, 32, 8923-8931.	1.2	76
237	Crystal structure of CATGGCCATG and its implications for A-tract bending models Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 2930-2934.	3.3	158
238	Macromolecular graphics. Current Opinion in Structural Biology, 1992, 2, 193-201.	2.6	9
239	Visualizing Biological Molecules. Scientific American, 1992, 267, 76-81.	1.0	31
240	Molecular illustration in black and white. Journal of Molecular Graphics, 1992, 10, 235-240.	1.7	17
241	Inside a living cell. Trends in Biochemical Sciences, 1991, 16, 203-206.	3.7	315
242	Automated docking of substrates to proteins by simulated annealing. Proteins: Structure, Function and Bioinformatics, 1990, 8, 195-202.	1.5	1,109
243	Rendering volumetric data in molecular systems. Journal of Molecular Graphics, 1989, 7, 41-47.	1.7	55
244	RMS: programs for generating raster molecular surfaces. Journal of Molecular Graphics, 1988, 6, 41-44.	1.7	10
245	The Effect of Crystal Packing on Oligonucleotide Double Helix Structure. Journal of Biomolecular Structure and Dynamics, 1987, 5, 557-579.	2.0	126
246	Isohelical analysis of DNA groove-binding drugs. Journal of Medicinal Chemistry, 1986, 29, 727-733.	2.9	162
247	Binding of an antitumor drug to DNA. Journal of Molecular Biology, 1985, 183, 553-563.	2.0	424
248	Bionanotechnology Today. , 0, , 227-294.		1
249	Bionanomachines in Action. , 0, , 9-41.		1
250	Structural Principles of Bionanotechnology. , 0, , 75-134.		0
251	The Quest for Nanotechnology. , 0, , 1-8.		4
252	Functional Principles of Bionanotechnology., 0,, 135-226.		0

#	Article	IF	CITATIONS
253	The Future of Bionanotechnology. , 0, , 295-311.		O
254	Biomolecular Design and Biotechnology. , 0, , 43-74.		1