
## David Goodsell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5235054/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 2009, 30, 2785-2791.                                                                                                                                               | 3.3  | 16,850    |
| 2  | Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 1998, 19, 1639-1662.                                                                                                                              | 3.3  | 8,897     |
| 3  | A semiempirical free energy force field with charge-based desolvation. Journal of Computational Chemistry, 2007, 28, 1145-1152.                                                                                                                                                             | 3.3  | 1,854     |
| 4  | Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nature<br>Protocols, 2016, 11, 905-919.                                                                                                                                                            | 12.0 | 1,370     |
| 5  | Automated docking of flexible ligands: Applications of autodock. Journal of Molecular Recognition, 1996, 9, 1-5.                                                                                                                                                                            | 2.1  | 1,284     |
| 6  | Automated docking of substrates to proteins by simulated annealing. Proteins: Structure, Function and Bioinformatics, 1990, 8, 195-202.                                                                                                                                                     | 2.6  | 1,109     |
| 7  | RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic Acids Research, 2019, 47, D464-D474.                                                                                    | 14.5 | 918       |
| 8  | RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological<br>macromolecules for basic and applied research and education in fundamental biology, biomedicine,<br>biotechnology, bioengineering and energy sciences. Nucleic Acids Research, 2021, 49, D437-D451. | 14.5 | 918       |
| 9  | Distributed automated docking of flexible ligands to proteins: Parallel applications of AutoDock 2.4.<br>Journal of Computer-Aided Molecular Design, 1996, 10, 293-304.                                                                                                                     | 2.9  | 907       |
| 10 | Structural Symmetry and Protein Function. Annual Review of Biophysics and Biomolecular Structure, 2000, 29, 105-153.                                                                                                                                                                        | 18.3 | 806       |
| 11 | Protein Data Bank: the single global archive for 3D macromolecular structure data. Nucleic Acids<br>Research, 2019, 47, D520-D528.                                                                                                                                                          | 14.5 | 671       |
| 12 | OUP accepted manuscript. Nucleic Acids Research, 2017, 45, D271-D281.                                                                                                                                                                                                                       | 14.5 | 619       |
| 13 | The RCSB Protein Data Bank: redesigned web site and web services. Nucleic Acids Research, 2011, 39, D392-D401.                                                                                                                                                                              | 14.5 | 549       |
| 14 | Virtual screening with AutoDock: theory and practice. Expert Opinion on Drug Discovery, 2010, 5, 597-607.                                                                                                                                                                                   | 5.0  | 462       |
| 15 | The RCSB Protein Data Bank: views of structural biology for basic and applied research and education.<br>Nucleic Acids Research, 2015, 43, D345-D356.                                                                                                                                       | 14.5 | 461       |
| 16 | Binding of an antitumor drug to DNA. Journal of Molecular Biology, 1985, 183, 553-563.                                                                                                                                                                                                      | 4.2  | 424       |
| 17 | The RCSB Protein Data Bank: new resources for research and education. Nucleic Acids Research, 2012, 41, D475-D482.                                                                                                                                                                          | 14.5 | 418       |
| 18 | Automated docking to multiple target structures: Incorporation of protein mobility and structural water heterogeneity in AutoDock. Proteins: Structure, Function and Bioinformatics, 2002, 46, 34-40.                                                                                       | 2.6  | 394       |

| #  | Article                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Inside a living cell. Trends in Biochemical Sciences, 1991, 16, 203-206.                                                                                            | 7.5  | 315       |
| 20 | AutoDockFR: Advances in Protein-Ligand Docking with Explicitly Specified Binding Site Flexibility. PLoS<br>Computational Biology, 2015, 11, e1004586.               | 3.2  | 287       |
| 21 | Seeing the nanoscale. Nano Today, 2006, 1, 44-49.                                                                                                                   | 11.9 | 285       |
| 22 | Bending and curvature calculations in B-DNA. Nucleic Acids Research, 1994, 22, 5497-5503.                                                                           | 14.5 | 284       |
| 23 | 1,2,3-Triazole as a Peptide Surrogate in the Rapid Synthesis of HIV-1 Protease Inhibitors. ChemBioChem, 2005, 6, 1167-1169.                                         | 2.6  | 262       |
| 24 | RCSB Protein Data Bank: Enabling biomedical research and drug discovery. Protein Science, 2020, 29, 52-65.                                                          | 7.6  | 223       |
| 25 | Morphology of protein–protein interfaces. Structure, 1998, 6, 421-427.                                                                                              | 3.3  | 218       |
| 26 | The cAMP binding domain: An ancient signaling module. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 45-50.            | 7.1  | 190       |
| 27 | Moltemplate: A Tool for Coarse-Grained Modeling of Complex Biological Matter and Soft Condensed<br>Matter Physics. Journal of Molecular Biology, 2021, 433, 166841. | 4.2  | 189       |
| 28 | Covalent docking using autodock: Twoâ€point attractor and flexible side chain methods. Protein<br>Science, 2016, 25, 295-301.                                       | 7.6  | 170       |
| 29 | Isohelical analysis of DNA groove-binding drugs. Journal of Medicinal Chemistry, 1986, 29, 727-733.                                                                 | 6.4  | 162       |
| 30 | Crystal structure of CATGGCCATG and its implications for A-tract bending models Proceedings of the United States of America, 1993, 90, 2930-2934.                   | 7.1  | 158       |
| 31 | The Machinery of Life. , 2009, , .                                                                                                                                  |      | 156       |
| 32 | The Crystal Structure of C-C-A-T-T-A-A-T-G-G. Journal of Molecular Biology, 1994, 239, 79-96.                                                                       | 4.2  | 149       |
| 33 | Visualization of macromolecular structures. Nature Methods, 2010, 7, S42-S55.                                                                                       | 19.0 | 137       |
| 34 | Rapid Diversity-Oriented Synthesis in Microtiter Plates for In Situ Screening of HIV Protease<br>Inhibitors. ChemBioChem, 2003, 4, 1246-1248.                       | 2.6  | 134       |
| 35 | Automated prediction of ligandâ€binding sites in proteins. Proteins: Structure, Function and<br>Bioinformatics, 2008, 70, 1506-1517.                                | 2.6  | 134       |
| 36 | cellPACK: a virtual mesoscope to model and visualize structural systems biology. Nature Methods,<br>2015, 12, 85-91.                                                | 19.0 | 130       |

| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | The Effect of Crystal Packing on Oligonucleotide Double Helix Structure. Journal of Biomolecular<br>Structure and Dynamics, 1987, 5, 557-579.                                                                         | 3.5  | 126       |
| 38 | Crystal Structure of a Covalent DNA-Drug Adduct: Anthramycin Bound to C-C-A-A-C-G-T-T-G-G and a Molecular Explanation of Specificity. Biochemistry, 1994, 33, 13593-13610.                                            | 2.5  | 115       |
| 39 | Visualizing biological data—now and in the future. Nature Methods, 2010, 7, S2-S4.                                                                                                                                    | 19.0 | 115       |
| 40 | Defining GC-specificity in the minor groove: side-by-side binding of the di-imidazole lexitropsin to C-A-T-G-G-C-C-A-T-G. Structure, 1997, 5, 1033-1046.                                                              | 3.3  | 109       |
| 41 | Soluble proteins: Size, shape and function. Trends in Biochemical Sciences, 1993, 18, 65-68.                                                                                                                          | 7.5  | 92        |
| 42 | The Molecular Perspective: The <i>ras</i> Oncogene. Oncologist, 1999, 4, 263-264.                                                                                                                                     | 3.7  | 91        |
| 43 | The RCSB PDB "Molecule of the Monthâ€: Inspiring a Molecular View of Biology. PLoS Biology, 2015, 13, e1002140.                                                                                                       | 5.6  | 88        |
| 44 | Illustrate: Software for Biomolecular Illustration. Structure, 2019, 27, 1716-1720.e1.                                                                                                                                | 3.3  | 87        |
| 45 | Refinement of Netropsin Bound to DNA: Bias and Feedback in Electron Density Map Interpretation.<br>Biochemistry, 1995, 34, 4983-4993.                                                                                 | 2.5  | 86        |
| 46 | The <scp>AutoDock</scp> suite at 30. Protein Science, 2021, 30, 31-43.                                                                                                                                                | 7.6  | 85        |
| 47 | Automated docking in crystallography: Analysis of the substrates of aconitase. Proteins: Structure,<br>Function and Bioinformatics, 1993, 17, 1-10.                                                                   | 2.6  | 84        |
| 48 | <scp>RCSB</scp> Protein Data Bank: Celebrating 50 years of the <scp>PDB</scp> with new tools for<br>understanding and visualizing biological macromolecules in <scp>3D</scp> . Protein Science, 2022, 31,<br>187-208. | 7.6  | 84        |
| 49 | ePMV Embeds Molecular Modeling into Professional Animation Software Environments. Structure, 2011, 19, 293-303.                                                                                                       | 3.3  | 82        |
| 50 | Automated docking of ligands to an artificial active site: augmenting crystallographic analysis with computer modeling. Journal of Computer-Aided Molecular Design, 2003, 17, 525-536.                                | 2.9  | 81        |
| 51 | Tactile teaching: Exploring protein structure/function using physical models. Biochemistry and Molecular Biology Education, 2006, 34, 247-254.                                                                        | 1.2  | 77        |
| 52 | Crystallographic analysis of C-C-A-A-G-C-T-T-G-G and its implications for bending in B-DNA.<br>Biochemistry, 1993, 32, 8923-8931.                                                                                     | 2.5  | 76        |
| 53 | A visual review of the human pathogen Streptococcus pneumoniae. FEMS Microbiology Reviews, 2017, 41, 854-879.                                                                                                         | 8.6  | 72        |
| 54 | The Molecular Perspective: Ultraviolet Light and Pyrimidine Dimers. Oncologist, 2001, 6, 298-299.                                                                                                                     | 3.7  | 70        |

| #  | Article                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | RCSB Protein Data Bank: A Resource for Chemical, Biochemical, and Structural Explorations of Large and Small Biomolecules. Journal of Chemical Education, 2016, 93, 569-575.                       | 2.3  | 66        |
| 56 | Crystal Structure of C-T-C-T-C-G-A-G-A-G. Implications for the Structure of the Holliday Junction.<br>Biochemistry, 1995, 34, 1022-1029.                                                           | 2.5  | 62        |
| 57 | Rendering volumetric data in molecular systems. Journal of Molecular Graphics, 1989, 7, 41-47.                                                                                                     | 1.1  | 55        |
| 58 | 3D molecular models of whole HIV-1 virions generated with cellPACK. Faraday Discussions, 2014, 169, 23-44.                                                                                         | 3.2  | 52        |
| 59 | Molecular Illustration in Research and Education: Past, Present, and Future. Journal of Molecular<br>Biology, 2018, 430, 3969-3981.                                                                | 4.2  | 52        |
| 60 | Analysis of a data set of paired uncomplexed protein structures: New metrics for side-chain flexibility and model evaluation. Proteins: Structure, Function and Bioinformatics, 2001, 43, 271-279. | 2.6  | 50        |
| 61 | The Molecular Perspective: The <i>ras</i> Oncogene. Stem Cells, 1999, 17, 235-236.                                                                                                                 | 3.2  | 49        |
| 62 | Redoxâ€Based Probes for Protein Tyrosine Phosphatases. Angewandte Chemie - International Edition,<br>2011, 50, 4423-4427.                                                                          | 13.8 | 48        |
| 63 | Protein Flexibility in Virtual Screening: The BACE-1 Case Study. Journal of Chemical Information and<br>Modeling, 2012, 52, 2697-2704.                                                             | 5.4  | 47        |
| 64 | Visual Methods from Atoms to Cells. Structure, 2005, 13, 347-354.                                                                                                                                  | 3.3  | 46        |
| 65 | The molecular perspective: the ras oncogene. Oncologist, 1999, 4, 263-4.                                                                                                                           | 3.7  | 45        |
| 66 | The Molecular Perspective: Methotrexate. Oncologist, 1999, 4, 340-341.                                                                                                                             | 3.7  | 43        |
| 67 | <scp>PDB</scp> â€101: Educational resources supporting molecular explorations through biology and medicine. Protein Science, 2022, 31, 129-140.                                                    | 7.6  | 43        |
| 68 | Promoting a structural view of biology for varied audiences: an overview of RCSB PDB resources and experiences. Journal of Applied Crystallography, 2010, 43, 1224-1229.                           | 4.5  | 41        |
| 69 | Building Structural Models of a Whole Mycoplasma Cell. Journal of Molecular Biology, 2022, 434,<br>167351.                                                                                         | 4.2  | 40        |
| 70 | Grid-Based Hydrogen Bond Potentials with Improved Directionality. Letters in Drug Design and Discovery, 2004, 1, 178-183.                                                                          | 0.7  | 38        |
| 71 | Filling in the Gaps: Artistic License in Education and Outreach. PLoS Biology, 2007, 5, e308.                                                                                                      | 5.6  | 38        |
| 72 | The Molecular Perspective: VEGF and Angiogenesis. Stem Cells, 2003, 21, 118-119.                                                                                                                   | 3.2  | 37        |

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Instant Construction and Visualization of Crowded Biological Environments. IEEE Transactions on Visualization and Computer Graphics, 2018, 24, 862-872.                                                             | 4.4 | 36        |
| 74 | Art and Science of the Cellular Mesoscale. Trends in Biochemical Sciences, 2020, 45, 472-483.                                                                                                                       | 7.5 | 36        |
| 75 | The Molecular Perspective: Ultraviolet Light and Pyrimidine Dimers. Stem Cells, 2001, 19, 348-349.                                                                                                                  | 3.2 | 35        |
| 76 | The Molecular Perspective: Cisplatin. Stem Cells, 2006, 24, 514-515.                                                                                                                                                | 3.2 | 35        |
| 77 | Empirical entropic contributions in computational docking: Evaluation in APS reductase complexes.<br>Journal of Computational Chemistry, 2008, 29, 1753-1761.                                                       | 3.3 | 34        |
| 78 | The Molecular Perspective: VEGF and Angiogenesis. Oncologist, 2002, 7, 569-570.                                                                                                                                     | 3.7 | 33        |
| 79 | Computational Docking of Biomolecular Complexes with AutoDock. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5200.                                                                                              | 0.3 | 33        |
| 80 | CellPAINT: Interactive Illustration of Dynamic Mesoscale Cellular Environments. IEEE Computer<br>Graphics and Applications, 2018, 38, 51-66.                                                                        | 1.2 | 33        |
| 81 | Structure-Based Virtual Screening and Biological Evaluation of <i>Mycobacterium tuberculosis</i><br>Adenosine 5′-Phosphosulfate Reductase Inhibitors. Journal of Medicinal Chemistry, 2008, 51, 6627-6630.          | 6.4 | 32        |
| 82 | Visualizing Biological Molecules. Scientific American, 1992, 267, 76-81.                                                                                                                                            | 1.0 | 31        |
| 83 | Structure of a dicationic monoimidazole lexitropsin bound to DNA. Biochemistry, 1995, 34, 16654-16661.                                                                                                              | 2.5 | 31        |
| 84 | From Atoms to Cells: Using Mesoscale Landscapes to Construct Visual Narratives. Journal of<br>Molecular Biology, 2018, 430, 3954-3968.                                                                              | 4.2 | 31        |
| 85 | Evolution of the <scp>SARSâ€CoV</scp> â€2 proteome in three dimensions (3D) during the first 6 months of the <scp>COVID</scp> â€19 pandemic. Proteins: Structure, Function and Bioinformatics, 2022, 90, 1054-1080. | 2.6 | 31        |
| 86 | The Molecular Perspective: Methotrexate. Stem Cells, 1999, 17, 314-315.                                                                                                                                             | 3.2 | 29        |
| 87 | Progress in the design of DNA sequence-specific lexitropsins. , 1997, 44, 323-334.                                                                                                                                  |     | 28        |
| 88 | The Molecular Perspective: Bcl-2 and Apoptosis. Stem Cells, 2002, 20, 355-356.                                                                                                                                      | 3.2 | 28        |
| 89 | Escherichia coli. Biochemistry and Molecular Biology Education, 2009, 37, 325-332.                                                                                                                                  | 1.2 | 28        |
| 90 | The Molecular Perspective: Cytochrome c and Apoptosis. Oncologist, 2004, 9, 226-227.                                                                                                                                | 3.7 | 27        |

| #   | Article                                                                                                                                                               | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | The Molecular Perspective: Cisplatin. Oncologist, 2006, 11, 316-317.                                                                                                  | 3.7  | 27        |
| 92  | Docking of 4-oxalocrotonate tautomerase substrates: Implications for the catalytic mechanism. , 1999, 50, 319-328.                                                    |      | 26        |
| 93  | The Molecular Perspective: Tamoxifen and the Estrogen Receptor. Oncologist, 2002, 7, 163-164.                                                                         | 3.7  | 26        |
| 94  | Illustrations of the HIV Life Cycle. Current Topics in Microbiology and Immunology, 2015, 389, 243-252.                                                               | 1.1  | 25        |
| 95  | Automated Docking and the Search for HIV Protease Inhibitors. SAR and QSAR in Environmental Research, 1998, 8, 273-285.                                               | 2.2  | 24        |
| 96  | Lateâ€onset retinal degeneration pathology due to mutations in CTRP5 is mediated through HTRA1. Aging<br>Cell, 2019, 18, e13011.                                      | 6.7  | 24        |
| 97  | Representing Structural Information with RasMol. Current Protocols in Bioinformatics, 2005, 11, Unit 5.4.                                                             | 25.8 | 23        |
| 98  | Lattice Models of Bacterial Nucleoids. Journal of Physical Chemistry B, 2018, 122, 5441-5447.                                                                         | 2.6  | 23        |
| 99  | Eukaryotic cell panorama. Biochemistry and Molecular Biology Education, 2011, 39, 91-101.                                                                             | 1.2  | 22        |
| 100 | Estimation of the DNA sequence discriminatory ability of hairpin-linked lexitropsins. Proceedings of the United States of America, 1997, 94, 5634-5639.               | 7.1  | 21        |
| 101 | Sequence Recognition of DNA by Lexitropsins. Current Medicinal Chemistry, 2001, 8, 509-516.                                                                           | 2.4  | 21        |
| 102 | The molecular perspective: methotrexate. Oncologist, 1999, 4, 340-1.                                                                                                  | 3.7  | 21        |
| 103 | BioEditor–simplifying macromolecular structure annotation. Bioinformatics, 2003, 19, 897-898.                                                                         | 4.1  | 20        |
| 104 | <i>Modeling in the Time of COVID-19:</i> Statistical and Rule-based Mesoscale Models. IEEE<br>Transactions on Visualization and Computer Graphics, 2021, 27, 722-732. | 4.4  | 20        |
| 105 | CellPAINT: Turnkey Illustration of Molecular Cell Biology. Frontiers in Bioinformatics, 2021, 1, .                                                                    | 2.1  | 20        |
| 106 | The Molecular Perspective: Epidermal Growth Factor. Oncologist, 2003, 8, 496-497.                                                                                     | 3.7  | 19        |
| 107 | Integrative illustration for coronavirus outreach. PLoS Biology, 2020, 18, e3000815.                                                                                  | 5.6  | 18        |
| 108 | Molecular illustration in black and white. Journal of Molecular Graphics, 1992, 10, 235-240.                                                                          | 1.1  | 17        |

7

| #   | Article                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Evolutionary analysis of HIV-1 protease inhibitors: Methods for design of inhibitors that evade resistance. Proteins: Structure, Function and Bioinformatics, 2002, 48, 63-74.                      | 2.6 | 17        |
| 110 | Selective and Effective: Current Progress in Computational Structure-Based Drug Discovery of Targeted Covalent Inhibitors. Trends in Pharmacological Sciences, 2020, 41, 1038-1049.                 | 8.7 | 17        |
| 111 | Impact of the Protein Data Bank Across Scientific Disciplines. Data Science Journal, 2020, 19, 25.                                                                                                  | 1.3 | 17        |
| 112 | The Molecular Perspective: Cyclooxygenaseâ€2. Oncologist, 2000, 5, 169-171.                                                                                                                         | 3.7 | 16        |
| 113 | Recognition templates for predicting adenylate-binding sites in proteins. Journal of Molecular<br>Biology, 2001, 314, 1245-1255.                                                                    | 4.2 | 16        |
| 114 | Labels on Levels: Labeling of Multi-Scale Multi-Instance and Crowded 3D Biological Environments. IEEE Transactions on Visualization and Computer Graphics, 2019, 25, 977-986.                       | 4.4 | 16        |
| 115 | Insights from 20 years of the Molecule of the Month. Biochemistry and Molecular Biology Education, 2020, 48, 350-355.                                                                               | 1.2 | 16        |
| 116 | Design of B-DNA cross-linking and sequence-reading molecules. Biopolymers, 1995, 35, 543-553.                                                                                                       | 2.4 | 15        |
| 117 | Coevolutionary analysis of resistance-evading peptidomimetic inhibitors of HIV-1 protease.<br>Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 1369-1374. | 7.1 | 14        |
| 118 | The Molecular Perspective: Bclâ $\in$ 2 and Apoptosis. Oncologist, 2002, 7, 259-260.                                                                                                                | 3.7 | 14        |
| 119 | Coevolution and subsite decomposition for the design of resistance-evading HIV-1 protease inhibitors<br>1 1Edited by F. E. Cohen. Journal of Molecular Biology, 1999, 287, 77-92.                   | 4.2 | 13        |
| 120 | The Molecular Perspective: Tamoxifen and the Estrogen Receptor. Stem Cells, 2002, 20, 267-268.                                                                                                      | 3.2 | 13        |
| 121 | Artophagy: The Art of Autophagy-the Cvt pathway. Autophagy, 2010, 6, 3-6.                                                                                                                           | 9.1 | 13        |
| 122 | Visibility Equalizer Cutaway Visualization of Mesoscopic Biological Models. Computer Graphics<br>Forum, 2016, 35, 161-170.                                                                          | 3.0 | 13        |
| 123 | Novel Intersubunit Interaction Critical for HIV-1 Core Assembly Defines a Potentially Targetable<br>Inhibitor Binding Pocket. MBio, 2019, 10, .                                                     | 4.1 | 13        |
| 124 | Seeing the PDB. Journal of Biological Chemistry, 2021, 296, 100742.                                                                                                                                 | 3.4 | 13        |
| 125 | The Molecular Perspective: Tumor Necrosis Factor. Oncologist, 2006, 11, 83-84.                                                                                                                      | 3.7 | 12        |
| 126 | The Molecular Perspective: Caspases. Oncologist, 2000, 5, 435-436.                                                                                                                                  | 3.7 | 11        |

| #   | Article                                                                                                                                                      | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | The Molecular Perspective: Caspases. Stem Cells, 2000, 18, 457-458.                                                                                          | 3.2 | 11        |
| 128 | The Molecular Perspective: Cadherin. Oncologist, 2002, 7, 467-468.                                                                                           | 3.7 | 11        |
| 129 | The Molecular Perspective: Double tranded DNA Breaks. Oncologist, 2005, 10, 361-362.                                                                         | 3.7 | 11        |
| 130 | The Molecular Perspective: l â€Asparaginase. Oncologist, 2005, 10, 238-239.                                                                                  | 3.7 | 11        |
| 131 | Neuromuscular synapse. Biochemistry and Molecular Biology Education, 2009, 37, 204-210.                                                                      | 1.2 | 11        |
| 132 | Atomic Evidence. , 2016, , .                                                                                                                                 |     | 11        |
| 133 | Cuttlefish: Color Mapping for Dynamic Multiâ€6cale Visualizations. Computer Graphics Forum, 2019, 38, 150-164.                                               | 3.0 | 11        |
| 134 | The Molecular Perspective: p53 Tumor Suppressor. Oncologist, 1999, 4, 138-139.                                                                               | 3.7 | 11        |
| 135 | RMS: programs for generating raster molecular surfaces. Journal of Molecular Graphics, 1988, 6, 41-44.                                                       | 1.1 | 10        |
| 136 | The Molecular Perspective: Morphine. Oncologist, 2004, 9, 717-718.                                                                                           | 3.7 | 10        |
| 137 | The Molecular Perspective: Cytochrome c and Apoptosis. Stem Cells, 2004, 22, 428-429.                                                                        | 3.2 | 10        |
| 138 | RCSB Protein Data Bank resources for structure-facilitated design of mRNA vaccines for existing and emerging viral pathogens. Structure, 2022, 30, 55-68.e2. | 3.3 | 10        |
| 139 | Macromolecular graphics. Current Opinion in Structural Biology, 1992, 2, 193-201.                                                                            | 5.7 | 9         |
| 140 | The Molecular Perspective: DNA Topoisomerases. Stem Cells, 2002, 20, 470-471.                                                                                | 3.2 | 9         |
| 141 | The Molecular Perspective: Cadherin. Stem Cells, 2002, 20, 583-584.                                                                                          | 3.2 | 9         |
| 142 | Fact and Fantasy in Nanotech Imagery. Leonardo, 2009, 42, 52-57.                                                                                             | 0.3 | 9         |
| 143 | Mitochondrion. Biochemistry and Molecular Biology Education, 2010, 38, 134-140.                                                                              | 1.2 | 9         |
| 144 | A Study on Docking Mode of HIV Protease and Their Inhibitors Journal of Chemical Software, 2001, 7, 103-114.                                                 | 0.2 | 9         |

| #   | Article                                                                                                                                                                           | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | The Molecular Perspective: Epidermal Growth Factor. Stem Cells, 2003, 21, 702-703.                                                                                                | 3.2  | 8         |
| 146 | <i>Illustrating the machinery of life</i> : Viruses. Biochemistry and Molecular Biology Education, 2012, 40, 291-296.                                                             | 1.2  | 8         |
| 147 | Interactive modeling of supramolecular assemblies. Journal of Molecular Graphics and Modelling, 1998, 16, 115-120.                                                                | 2.4  | 7         |
| 148 | The theoretical limits of DNA sequence discrimination by linked polyamides. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 4315-4320. | 7.1  | 7         |
| 149 | The Molecular Perspective: p53 Tumor Suppressor. Stem Cells, 1999, 17, 189-190.                                                                                                   | 3.2  | 7         |
| 150 | The Molecular Perspective: Microtubules and the Taxanes. Oncologist, 2000, 5, 345-346.                                                                                            | 3.7  | 7         |
| 151 | The Molecular Perspective: Histone Deacetylase. Stem Cells, 2003, 21, 620-621.                                                                                                    | 3.2  | 7         |
| 152 | The Molecular Perspective: Alcohol. Oncologist, 2006, 11, 1045-1046.                                                                                                              | 3.7  | 7         |
| 153 | The Molecular Perspective: Estrogen Sulfotransferase. Oncologist, 2006, 11, 418-419.                                                                                              | 3.7  | 7         |
| 154 | The evolution of the RCSB Protein Data Bank website. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2011, 1, 782-789.                                          | 14.6 | 7         |
| 155 | Molecular storytelling for online structural biology outreach and education. Structural Dynamics, 2021, 8, 020401.                                                                | 2.3  | 7         |
| 156 | Art as a tool for science. Nature Structural and Molecular Biology, 2021, 28, 402-403.                                                                                            | 8.2  | 7         |
| 157 | Automated docking of flexible ligands: Applications of autodock. , 1996, 9, 1.                                                                                                    |      | 7         |
| 158 | The molecular perspective: p53 tumor suppressor. Oncologist, 1999, 4, 138-9.                                                                                                      | 3.7  | 7         |
| 159 | Exploring protein symmetry at the RCSB Protein Data Bank. Emerging Topics in Life Sciences, 2022, 6, 231-243.                                                                     | 2.6  | 7         |
| 160 | The Molecular Perspective: Cyclooxygenase-2. Stem Cells, 2000, 18, 227-229.                                                                                                       | 3.2  | 6         |
| 161 | Looking at Molecules-An Essay on Art and Science. ChemBioChem, 2003, 4, 1293-1297.                                                                                                | 2.6  | 6         |
| 162 | The Molecular Perspective: Nicotine and Nitrosamines. Oncologist, 2004, 9, 353-354.                                                                                               | 3.7  | 6         |

| #   | Article                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | The Molecular Perspective: Morphine. Stem Cells, 2005, 23, 144-145.                                                                            | 3.2 | 6         |
| 164 | The Molecular Perspective: Tissue Factor. Oncologist, 2006, 11, 849-850.                                                                       | 3.7 | 6         |
| 165 | Protein structure in context: The molecular landscape of angiogenesis. Biochemistry and Molecular<br>Biology Education, 2013, 41, 213-223.     | 1.2 | 6         |
| 166 | Parallel Generation and Visualization of Bacterial Genome Structures. Computer Graphics Forum, 2019, 38, 57-68.                                | 3.0 | 6         |
| 167 | RCSB Protein Data Bank tools for 3D structure-guided cancer research: human papillomavirus (HPV)<br>case study. Oncogene, 2020, 39, 6623-6632. | 5.9 | 6         |
| 168 | Integrative illustration of a JCVI-syn3A minimal cell. Journal of Integrative Bioinformatics, 2022, 19, .                                      | 1.5 | 6         |
| 169 | The Molecular Perspective: DNA. Stem Cells, 2000, 18, 148-149.                                                                                 | 3.2 | 5         |
| 170 | The Molecular Perspective: Histone Deacetylase. Oncologist, 2003, 8, 389-391.                                                                  | 3.7 | 5         |
| 171 | The Molecular Perspective: Microtubules and the Taxanes. Stem Cells, 2000, 18, 382-383.                                                        | 3.2 | 4         |
| 172 | The Molecular Perspective: Cytochrome P450. Oncologist, 2001, 6, 205-206.                                                                      | 3.7 | 4         |
| 173 | The Molecular Perspective: Antibodies. Oncologist, 2001, 6, 547-548.                                                                           | 3.7 | 4         |
| 174 | The Molecular Perspective: Restriction Endonucleases. Oncologist, 2002, 7, 82-83.                                                              | 3.7 | 4         |
| 175 | The Molecular Perspective: Restriction Endonucleases. Stem Cells, 2002, 20, 190-191.                                                           | 3.2 | 4         |
| 176 | The Molecular Perspective: DNA Polymerase. Oncologist, 2004, 9, 108-109.                                                                       | 3.7 | 4         |
| 177 | The Quest for Nanotechnology. , 0, , 1-8.                                                                                                      |     | 4         |
| 178 | Recognition in action: DNA mimicry. Journal of Molecular Recognition, 2005, 18, 427-430.                                                       | 2.1 | 4         |
| 179 | Identifying Protein Binding Sites and Optimal Ligands. Letters in Drug Design and Discovery, 2005, 2,<br>483-489.                              | 0.7 | 4         |
| 180 | Making the step from chemistry to biology and back. Nature Chemical Biology, 2007, 3, 681-684.                                                 | 8.0 | 4         |

| #   | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Putting proteins in context. BioEssays, 2012, 34, 718-720.                                                                                                                                                                                   | 2.5 | 4         |
| 182 | The Effects of the SUN Project on Teacher Knowledge and Self-Efficacy Regarding Biological Energy<br>Transfer Are Significant and Long-Lasting: Results of a Randomized Controlled Trial. CBE Life Sciences<br>Education, 2013, 12, 287-305. | 2.3 | 4         |
| 183 | Revealing structural views of biology. Biopolymers, 2013, 99, 817-824.                                                                                                                                                                       | 2.4 | 4         |
| 184 | Fragment-Based Analysis of Ligand Dockings Improves Classification of Actives. Journal of Chemical Information and Modeling, 2016, 56, 1597-1607.                                                                                            | 5.4 | 4         |
| 185 | Integrative modeling of the HIV-1 ribonucleoprotein complex. PLoS Computational Biology, 2019, 15, e1007150.                                                                                                                                 | 3.2 | 4         |
| 186 | Atomistic vs. Continuous Representations in Molecular Biology. , 1999, , 146-155.                                                                                                                                                            |     | 4         |
| 187 | Symmetry at the Cellular Mesoscale. Symmetry, 2019, 11, 1170.                                                                                                                                                                                | 2.2 | 4         |
| 188 | Design of stapled DNA-minor-groove-binding molecules with a mutable atom simulated annealing method. Journal of Computer-Aided Molecular Design, 1997, 11, 539-546.                                                                          | 2.9 | 3         |
| 189 | The art of molecular graphics Irving Geis: Dean of molecular illustration. Journal of Molecular<br>Graphics and Modelling, 1997, 15, 57-59.                                                                                                  | 2.4 | 3         |
| 190 | The Molecular Perspective: Matrix Metalloproteinase 2. Stem Cells, 2000, 18, 73-75.                                                                                                                                                          | 3.2 | 3         |
| 191 | The Molecular Perspective: Nicotine and Nitrosamines. Stem Cells, 2004, 22, 645-646.                                                                                                                                                         | 3.2 | 3         |
| 192 | The Molecular Perspective: Polycyclic Aromatic Hydrocarbons. Stem Cells, 2004, 22, 873-874.                                                                                                                                                  | 3.2 | 3         |
| 193 | The Molecular Perspective: Major Histocompatibility Complex. Stem Cells, 2005, 23, 454-455.                                                                                                                                                  | 3.2 | 3         |
| 194 | The Molecular Perspective: I-Asparaginase. Stem Cells, 2005, 23, 710-711.                                                                                                                                                                    | 3.2 | 3         |
| 195 | The Molecular Perspective: Double-Stranded DNA Breaks. Stem Cells, 2005, 23, 1021-1022.                                                                                                                                                      | 3.2 | 3         |
| 196 | Recognition in action: flipping pyrimidine dimers. Journal of Molecular Recognition, 2005, 18, 193-195.                                                                                                                                      | 2.1 | 3         |
| 197 | The Molecular Perspective: Hepatitis B Virus. Oncologist, 2007, 12, 516-517.                                                                                                                                                                 | 3.7 | 3         |
| 198 | The Molecular Perspective: Matrix Metalloproteinase 2. Oncologist, 1999, 4, 509-511.                                                                                                                                                         | 3.7 | 3         |

| #   | Article                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Chameleon: Dynamic Color Mapping for Multi-Scale Structural Biology Models. Eurographics<br>Workshop on Visual Computing for Biomedicine, 2016, 2016, . | 4.0 | 3         |
| 200 | Integrative Modeling and Visualization of Exosomes. The Journal of Biocommunication, 2019, 43, .                                                        | 0.1 | 3         |
| 201 | The Molecular Perspective: Simian Virus 40. Oncologist, 2000, 5, 260-262.                                                                               | 3.7 | 2         |
| 202 | The Molecular Perspective: Simian Virus 40. Stem Cells, 2000, 18, 301-303.                                                                              | 3.2 | 2         |
| 203 | The Molecular Perspective: Interferons. Oncologist, 2001, 6, 374-375.                                                                                   | 3.7 | 2         |
| 204 | The Molecular Perspective: The src Oncogene. Oncologist, 2001, 6, 474-476.                                                                              | 3.7 | 2         |
| 205 | The Molecular Perspective: DNA Topoisomerases. Oncologist, 2002, 7, 381-382.                                                                            | 3.7 | 2         |
| 206 | The Molecular Perspective: Ubiquitin and the Proteosome. Oncologist, 2003, 8, 293-294.                                                                  | 3.7 | 2         |
| 207 | The Molecular Perspective: Protein Farnesyltransferase. Oncologist, 2003, 8, 597-598.                                                                   | 3.7 | 2         |
| 208 | The Molecular Perspective: Protein Farnesyltransferase. Stem Cells, 2004, 22, 119-120.                                                                  | 3.2 | 2         |
| 209 | The Molecular Perspective: câ€Abl Tyrosine Kinase. Oncologist, 2005, 10, 758-759.                                                                       | 3.7 | 2         |
| 210 | The Molecular Perspective: Major Histocompatibility Complex. Oncologist, 2005, 10, 80-81.                                                               | 3.7 | 2         |
| 211 | The Molecular Perspective: c-Abl Tyrosine Kinase. Stem Cells, 2006, 24, 209-210.                                                                        | 3.2 | 2         |
| 212 | The RCSB Protein Data Bank: site functionality and bioinformatics use cases. NCI Nature Pathway Interaction Database, 2011, , .                         | 0.3 | 2         |
| 213 | The Molecular Perspective: The Multidrug Transporter. Oncologist, 1999, 4, 428-429.                                                                     | 3.7 | 2         |
| 214 | A hierarchical model of HIV-1 protease drug resistance. Applied Bioinformatics, 2002, 1, 3-12.                                                          | 1.6 | 2         |
| 215 | An Analysis of a Class of DNA Sequence Reading Molecules. Journal of Computational Biology, 1998, 5, 571-583.                                           | 1.6 | 1         |
| 216 | The Molecular Perspective: Cytochrome P450. Stem Cells, 2001, 19, 263-264.                                                                              | 3.2 | 1         |

| #   | Article                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | The Molecular Perspective: ThesrcOncogene. Stem Cells, 2001, 19, 553-555.                                                                                       | 3.2 | 1         |
| 218 | The Molecular Perspective: Antibodies. Stem Cells, 2002, 20, 94-95.                                                                                             | 3.2 | 1         |
| 219 | The Molecular Perspective: Ubiquitin and the Proteosome. Stem Cells, 2003, 21, 509-510.                                                                         | 3.2 | 1         |
| 220 | The Molecular Perspective: Polycyclic Aromatic Hydrocarbons. Oncologist, 2004, 9, 469-470.                                                                      | 3.7 | 1         |
| 221 | Bionanotechnology Today. , 0, , 227-294.                                                                                                                        |     | 1         |
| 222 | The Molecular Perspective: DNA Polymerase. Stem Cells, 2004, 22, 236-237.                                                                                       | 3.2 | 1         |
| 223 | Bionanomachines in Action. , 0, , 9-41.                                                                                                                         |     | 1         |
| 224 | Biomolecular Design and Biotechnology. , 0, , 43-74.                                                                                                            |     | 1         |
| 225 | The Molecular Perspective: RAD51 and BRCA2. Stem Cells, 2005, 23, 1434-1435.                                                                                    | 3.2 | 1         |
| 226 | Atomic Evidence: The Foundations of Structural Molecular Biology. Science Progress, 2011, 94, 414-430.                                                          | 1.9 | 1         |
| 227 | Scientific Delirium Madness 5.0: Gallery. Leonardo, 2019, 52, 220-229.                                                                                          | 0.3 | 1         |
| 228 | Picturing science: using art and imagination to explore new worlds. Biochemist, 2021, 43, 32-38.                                                                | 0.5 | 1         |
| 229 | Identification of novel βâ€secretase inhibitors through the inclusion of protein flexibility in virtual screening calculations. FASEB Journal, 2008, 22, 791.8. | 0.5 | 1         |
| 230 | Chapter 7 Molecules in living cells. Principles of Medical Biology, 1996, , 173-180.                                                                            | 0.1 | 0         |
| 231 | The Molecular Perspective: The Ribosome. Oncologist, 2000, 5, 508-509.                                                                                          | 3.7 | Ο         |
| 232 | The Molecular Perspective: DNA. Oncologist, 2000, 5, 81-82.                                                                                                     | 3.7 | 0         |
| 233 | The Molecular Perspective: The Ribosome. Stem Cells, 2001, 19, 92-93.                                                                                           | 3.2 | 0         |
| 234 | The Molecular Perspective: Targeted Toxins. Stem Cells, 2001, 19, 161-162.                                                                                      | 3.2 | 0         |

| #   | Article                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | The Molecular Perspective: Interferons. Stem Cells, 2001, 19, 467-468.                                                                                                   | 3.2 | 0         |
| 236 | The Molecular Perspective: Targeted Toxins. Oncologist, 2001, 6, 110-111.                                                                                                | 3.7 | 0         |
| 237 | The Molecular Perspective: Cyclins. Oncologist, 2004, 9, 592-593.                                                                                                        | 3.7 | 0         |
| 238 | The Molecular Perspective: Cyclins. Stem Cells, 2004, 22, 1121-1122.                                                                                                     | 3.2 | 0         |
| 239 | Structural Principles of Bionanotechnology. , 0, , 75-134.                                                                                                               |     | 0         |
| 240 | Functional Principles of Bionanotechnology. , 0, , 135-226.                                                                                                              |     | 0         |
| 241 | The Future of Bionanotechnology. , 0, , 295-311.                                                                                                                         |     | 0         |
| 242 | The Molecular Perspective: RAD51 and BRCA2. Oncologist, 2005, 10, 555-556.                                                                                               | 3.7 | 0         |
| 243 | Recognition highlights: Toll-like receptors. Journal of Molecular Recognition, 2006, 19, 387-388.                                                                        | 2.1 | 0         |
| 244 | Visualising microorganisms from molecules to cells. FEMS Microbiology Letters, 2014, 356, 1-7.                                                                           | 1.8 | 0         |
| 245 | Using physical models of proteins to tell molecular stories of researchâ€based health care. FASEB<br>Journal, 2006, 20, A976.                                            | 0.5 | 0         |
| 246 | Active Teaching and Tactile Learning: A Role for Physical Models of Molecular Structures. FASEB<br>Journal, 2007, 21, A297.                                              | 0.5 | 0         |
| 247 | Protein Structure in Context: The Landscape of Angiogenesis. FASEB Journal, 2013, 27, 1031.10.                                                                           | 0.5 | Ο         |
| 248 | PDB-101: educational portal for molecular explorations through biology and medicine. Acta<br>Crystallographica Section A: Foundations and Advances, 2017, 73, C670-C670. | 0.1 | 0         |
| 249 | Exploring biology and medicine using 3D biomacromolecules with PDB-101. Acta Crystallographica Section A: Foundations and Advances, 2019, 75, a26-a26.                   | 0.1 | 0         |
| 250 | Molecular storytelling for structural biology outreach and education. Acta Crystallographica<br>Section A: Foundations and Advances, 2020, 76, a9-a9.                    | 0.1 | 0         |
| 251 | Insights from 20 Years of the Molecule of the Month and PDBâ€101. FASEB Journal, 2020, 34, 1-1.                                                                          | 0.5 | 0         |
| 252 | The molecular perspective: the multidrug transporter. Oncologist, 1999, 4, 428-9.                                                                                        | 3.7 | 0         |

| #   | Article                                                                                    | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------|-----|-----------|
| 253 | The molecular perspective: matrix metalloproteinase 2. Oncologist, 1999, 4, 509-11.        | 3.7 | Ο         |
| 254 | The art of molecular graphics. Journal of Molecular Graphics and Modelling, 2000, 18, 173. | 2.4 | 0         |