Jiang-long Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5234986/publications.pdf

Version: 2024-02-01

168	7,976	46	82
papers	citations	h-index	g-index
170	170	170	5846
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Comprehensive technical review of the high-efficiency low-emission technology in advanced coal-fired power plants. Reviews in Chemical Engineering, 2023, 39, 363-386.	4.4	2
2	Effects of biofuel on engines performance and emission characteristics: A review. Energy, 2022, 238, 121910.	8.8	46
3	Freezing of micro-droplets driven by power ultrasound. Chemical Engineering Science, 2022, 251, 117448.	3.8	1
4	Mechanism of carbon structure transformation in plastic layer and semi-coke during coking of Australian metallurgical coals. Fuel, 2022, 315, 123205.	6.4	21
5	Synthesis of Super-Long Carbon Nanotubes from Cellulosic Biomass under Microwave Radiation. Nanomaterials, 2022, 12, 737.	4.1	14
6	Synthesis of 3D graphitic carbon foams via pressurized pyrolysis of Victorian brown coal as anode material for Li-ion battery. Journal of Analytical and Applied Pyrolysis, 2022, 164, 105489.	5 . 5	6
7	Structural Investigation of the Synthesized Few-Layer Graphene from Coal under Microwave. Nanomaterials, 2022, 12, 57.	4.1	8
8	A combined experimental and numerical study of coal briquettes pyrolysis using recycled gas in an industrial scale pyrolyser. Powder Technology, 2022, 404, 117477.	4.2	6
9	Photocatalytic, electrocatalytic and photoelectrocatalytic conversion of carbon dioxide: a review. Environmental Chemistry Letters, 2021, 19, 941-967.	16.2	68
10	Ice nucleation of water droplet containing solid particles under weak ultrasonic vibration. Ultrasonics Sonochemistry, 2021, 70, 105301.	8.2	5
11	Char reactivity and kinetics based on the dynamic char structure during gasification by CO2. Fuel Processing Technology, 2021, 211, 106583.	7.2	36
12	A review on the recent advances in the production of carbon nanotubes and carbon nanofibers via microwave-assisted pyrolysis of biomass. Fuel Processing Technology, 2021, 214, 106686.	7.2	71
13	Understanding the enhanced production of poly-aromatic hydrocarbons during the pyrolysis of lignocellulosic biomass components under pressurized entrained-flow conditions. Fuel Processing Technology, 2021, 213, 106645.	7.2	10
14	Carbon dioxide capture using liquid absorption methods: a review. Environmental Chemistry Letters, 2021, 19, 77-109.	16.2	165
15	Structural and electronic engineering of biomass-derived carbon nanosheet composite for electrochemical oxygen reduction. Sustainable Energy and Fuels, 2021, 5, 2114-2126.	4.9	8
16	Microwave-assisted synthesis of biochar†carbon-nanotube-NiO composite as high-performance anode materials for lithium-ion batteries. Fuel Processing Technology, 2021, 213, 106714.	7.2	36
17	Mechanistic study on the formation of silicon carbide nanowhiskers from biomass cellulose char under microwave. Materials Chemistry and Physics, 2021, 262, 124288.	4.0	11
18	Porous Biochars Derived from Microalgae Pyrolysis for CO ₂ Adsorption. Energy & mp; Fuels, 2021, 35, 7646-7656.	5.1	22

#	Article	IF	CITATIONS
19	A Review of the Numerical Modeling of Pulverized Coal Combustion for High-Efficiency, Low-Emissions (HELE) Power Generation. Energy & Energy & 2021, 35, 7434-7466.	5.1	10
20	Structure of Coal-Derived Metal-Supported Few-Layer Graphene Composite Materials Synthesized Using a Microwave-Assisted Catalytic Graphitization Process. Nanomaterials, 2021, 11, 1672.	4.1	8
21	A theoretical model for predicting homogeneous ice nucleation rate based on molecular kinetic energy distribution. Journal of Molecular Liquids, 2021, 333, 115959.	4.9	6
22	Construction of vitrinite molecular structures based on 13C NMR and FT-IR analysis: Fundamental insight into coal thermoplastic properties. Fuel, 2021, 300, 120981.	6.4	30
23	Role of microwave during microwave-assisted catalytic reforming of guaiacol, syringolbio-oil as model compounds. Journal of Analytical and Applied Pyrolysis, 2021, 158, 105290.	5.5	4
24	Novel composite nano-materials with 3D multilayer-graphene structures from biomass-based activated-carbon for ultrahigh Li-ion battery performance. Electrochimica Acta, 2021, 390, 138839.	5.2	11
25	Highly efficient and reversible low-concentration SO2 absorption in flue gas using novel phosphonium-based deep eutectic solvents with different substituents. Journal of Molecular Liquids, 2021, 340, 117228.	4.9	18
26	Performance and exhaust emissions rate of small-scale turbojet engine running on dual biodiesel blends using Gasturb. Energy, 2021, 232, 120971.	8.8	16
27	Absorption mechanism and kinetics of NO by Fe(II) based ethylene glycol (EG)-choline chloride (ChCl) deep eutectic solvents. Separation and Purification Technology, 2021, 275, 119271.	7.9	7
28	Biomass-derived Ta,N,S co-doped CNTs enriched carbon catalyst for efficient electrochemical oxygen reduction. Journal of Alloys and Compounds, 2021, 888, 161479.	5.5	12
29	Advances in catalytic hydrogen combustion research: Catalysts, mechanism, kinetics, and reactor designs. International Journal of Hydrogen Energy, 2021, 46, 40073-40104.	7.1	24
30	Microwave-Assisted Coal-Derived Few-Layer Graphene as an Anode Material for Lithium-Ion Batteries. Materials, 2021, 14, 6468.	2.9	4
31	Formation mechanism of nano graphitic structures during microwave catalytic graphitization of activated carbon. Diamond and Related Materials, 2021, 120, 108699.	3.9	10
32	LBM modelling of supercooled water freezing with inclusion of the recalescence stage. International Journal of Heat and Mass Transfer, 2020, 146, 118839.	4.8	15
33	A DSC study on the impact of low-temperature oxidation on the behavior and drying of water in lignite. Journal of Thermal Analysis and Calorimetry, 2020, 139, 3507-3517.	3.6	13
34	Adverse Effects of Inherent CaO in Coconut Shell-Derived Activated Carbon on Its Performance during Flue Gas Desulfurization. Environmental Science & Environmental Science & 2020, 54, 1973-1981.	10.0	13
35	Advances in the understanding of the formation and chemistry of the plastic layer during coke-making: A comprehensive review. Fuel, 2020, 263, 116655.	6.4	30
36	Pressurized entrained-flow pyrolysis of lignite for enhanced production of hydrogen-rich gas and chemical raw materials. Journal of Analytical and Applied Pyrolysis, 2020, 145, 104741.	5.5	14

#	Article	IF	CITATIONS
37	Mechanistic Study on the Removal of NO2 from Flue Gas Using Novel Ethylene Glycol-tetrabutylammonium Bromide Deep Eutectic Solvents. ACS Omega, 2020, 5, 31220-31226.	3.5	5
38	Advancement of ammonia-based post-combustion CO2 capture technology: Process modifications. Fuel Processing Technology, 2020, 210, 106544.	7.2	16
39	A comprehensive study on the transformation of chemical structures in the plastic layers during coking of Australian coals. Journal of Analytical and Applied Pyrolysis, 2020, 152, 104947.	5.5	17
40	A Study on Mn-Fe Catalysts Supported on Coal Fly Ash for Low-Temperature Selective Catalytic Reduction of NOX in Flue Gas. Catalysts, 2020, 10, 1399.	3.5	14
41	Desulfurization Performance and Kinetics of Potassium Hydroxide-Impregnated Char Sorbents for SO ₂ Removal from Simulated Flue Gas. ACS Omega, 2020, 5, 19194-19201.	3.5	9
42	Virtual Special Issue of 2019 International Symposium on Clean Energy and Advanced Carbon Materials (CEAM-2019). Energy & December 2020, 34, 6521-6522.	5.1	2
43	State-of-the-Art Research and Applications of Carbon Foam Composite Materials as Electrodes for High-Capacity Lithium Batteries. Energy & Samp; Fuels, 2020, 34, 7935-7954.	5.1	26
44	Influence of functional group structures on combustion behavior of pulverized coal particles. Journal of the Energy Institute, 2020, 93, 2124-2132.	5.3	19
45	Correlation between Char Gasification Characteristics at Different Stages and Microstructure of Char by Combining X-ray Diffraction and Raman Spectroscopy. Energy &	5.1	29
46	Catalytic reforming of palm kernel shell microwave pyrolysis vapors over iron-loaded activated carbon: Enhanced production of phenol and hydrogen. Bioresource Technology, 2020, 306, 123111.	9.6	42
47	Promotion Effects of Pressure on Polycyclic Aromatic Hydrocarbons and H ₂ Formation during Flash Pyrolysis of Palm Kernel Shell. Energy & Energy & 2020, 34, 3346-3356.	5.1	18
48	Using Three-Dimensional Image Analysis Techniques To Understand the Formation of the Plastic Layer during the Heating of Australian Coking Coal Blends. Energy & Energy & 2020, 34, 3153-3160.	5.1	13
49	Synthesis of High Reversibility Anode Composite Materials Using T-Nb ₂ O ₅ and Coal-Based Graphite for Lithium-Ion Battery Applications. Energy &	5.1	39
50	Effect of K2O/Na2O on fusion behavior of coal ash with high silicon and aluminum level. Fuel, 2020, 265, 116964.	6.4	40
51	A review of the state-of-the-art research on carbon structure evolution during the coking process: From plastic layer chemistry to 3D carbon structure establishment. Fuel, 2020, 271, 117657.	6.4	36
52	Kinetics and Mechanism of Catalytic Oxidation of NO in Coal Combustion Flue Gas over Co-Doped Mn–Ti Oxide Catalyst. Energy & Fuels, 2020, 34, 6052-6058.	5.1	12
53	Chemical structure transformation during the later stage of plastic layers during coking using Synchrotron infrared microspectroscopy technique. Fuel, 2020, 273, 117764.	6.4	21
54	Mechanistic Investigations of Particle Ignition of Pulverized Coals: An Enhanced Numerical Model and Experimental Observations. Energy & Energy & 16666-16678.	5.1	2

#	Article	IF	Citations
55	Preface to the special issue on "Advanced Hydrogen Production Technology― International Journal of Hydrogen Energy, 2019, 44, 14257.	7.1	1
56	Mechanistic study on direct synthesis of carbon nanotubes from cellulose by means of microwave pyrolysis. Energy Conversion and Management, 2019, 192, 88-99.	9.2	47
57	Influence of biomass pretreatment on co-combustion characteristics with coal and biomass blends. Journal of Mechanical Science and Technology, 2019, 33, 2493-2501.	1.5	15
58	Impact of large sized inertinite particles on thermo-swelling and volatile release of coking coals. Fuel Processing Technology, 2019, 193, 63-72.	7.2	5
59	In Situ Synthesis of Pt/TiO ₂ Nanosheets on Flexible Ti Mesh for Efficient and Cyclic Phenol Removal. Inorganic Chemistry, 2019, 58, 7303-7309.	4.0	15
60	Improvement in Reactivity and Pollutant Emission by Cofiring of Coal and Pretreated Biomass. Energy & Empty &	5.1	17
61	Green synthesis of porous graphitic carbons from coal tar pitch templated by nano-CaCO3 for high-performance lithium-ion batteries. Journal of Alloys and Compounds, 2019, 795, 91-102.	5.5	64
62	In-situ study of plastic layers during coking of six Australian coking coals using a lab-scale coke oven. Fuel Processing Technology, 2019, 188, 51-59.	7.2	33
63	Study of chemical structure transition in the plastic layers sampled from a pilot-scale coke oven using a thermogravimetric analyzer coupled with Fourier transform infrared spectrometer. Fuel, 2019, 242, 277-286.	6.4	31
64	Effects of fly ash properties on carbonation efficiency in CO2 mineralisation. Fuel Processing Technology, 2019, 188, 79-88.	7.2	56
65	An Improved Particle Swarm Optimization Algorithm Combined with Invasive Weed Optimization. , 2019, , \cdot		0
66	Porous graphene prepared from anthracite as high performance anode materials for lithium-ion battery applications. Journal of Alloys and Compounds, 2019, 779, 202-211.	5.5	91
67	Impact of pressure on the carbon structure of char during pyrolysis of bituminous coal in pressurized entrained-flow reactor. Korean Journal of Chemical Engineering, 2019, 36, 393-403.	2.7	18
68	Production of carbon nanotubes on bio-char at low temperature via microwave-assisted CVD using Ni catalyst. Diamond and Related Materials, 2019, 91, 98-106.	3.9	49
69	Mechanistic Study of Selective Absorption of NO in Flue Gas Using EG-TBAB Deep Eutectic Solvents. Environmental Science & Envi	10.0	34
70	The transformation of nitrogen during pressurized entrained-flow pyrolysis of Chlorella vulgaris. Bioresource Technology, 2018, 262, 90-97.	9.6	44
71	Effects of pressure on morphology and structure of bio-char from pressurized entrained-flow pyrolysis of microalgae. Data in Brief, 2018, 18, 422-431.	1.0	18
72	Direct synthesis of hollow carbon nanofibers on bio-char during microwave pyrolysis of pine nut shell. Journal of Analytical and Applied Pyrolysis, 2018, 130, 142-148.	5.5	38

#	Article	IF	Citations
73	Pressurized entrained-flow pyrolysis of microalgae: Enhanced production of hydrogen and nitrogen-containing compounds. Bioresource Technology, 2018, 256, 160-169.	9.6	66
74	Preparation of synthetic graphite from bituminous coal as anode materials for high performance lithium-ion batteries. Fuel Processing Technology, 2018, 172, 162-171.	7.2	159
75	An Experimental Investigation of the Catalytic Activity of Natural Calcium-Rich Minerals and a Novel Dual-Supported CaOâ€"Ca ₁₂ Al ₁₄ O ₃₃ /Al ₂ O ₃ Catalyst for Biotar Steam Reforming. Energy & Support Suppo	5.1	11
76	A review on the production of nitrogen-containing compounds from microalgal biomass via pyrolysis. Bioresource Technology, 2018, 270, 689-701.	9.6	76
77	A study on the structural transition in the plastic layer during coking of Australian coking coals using Synchrotron micro-CT and ATR-FTIR. Fuel, 2018, 233, 877-884.	6.4	30
78	Understanding water retention behavior and mechanism in bio-char. Fuel Processing Technology, 2018, 169, 101-111.	7.2	25
79	The effects of mineral salt catalysts on selectivity of phenolic compounds in bio-oil during microwave pyrolysis of peanut shell. Korean Journal of Chemical Engineering, 2017, 34, 672-680.	2.7	16
80	Characterization and behavior of water in lignocellulosic and microalgal biomass for thermochemical conversion. Fuel Processing Technology, 2017, 160, 121-129.	7.2	4
81	Facile synthesis of graphene nanosheets from humic acid for supercapacitors. Fuel Processing Technology, 2017, 165, 112-122.	7.2	88
82	Investigations on the Synergistic Effects of Oxygen and CaO for Biotars Cracking during Biomass Gasification. Energy & E	5.1	6
83	CO 2 sequestration by direct mineralisation using fly ash from Chinese Shenfu coal. Fuel Processing Technology, 2017, 156, 429-437.	7.2	79
84	Mechanism of synergy effect during microwave co-pyrolysis of biomass and lignite. Journal of Analytical and Applied Pyrolysis, 2017, 128, 75-82.	5.5	47
85	Formation of nitrogen-containing compounds during microwave pyrolysis of microalgae: Product distribution and reaction pathways. Bioresource Technology, 2017, 245, 1067-1074.	9.6	83
86	Comparative study on flash pyrolysis characteristics of microalgal and lignocellulosic biomass in entrained-flow reactor. Energy Conversion and Management, 2017, 151, 426-438.	9.2	92
87	Formation of hollow carbon nanofibers on bio-char during microwave pyrolysis of palm kernel shell. Energy Conversion and Management, 2017, 148, 583-592.	9.2	69
88	Optical and conductive properties of functional materials extracted from coal tar pitches treated by air oxidization method. Russian Journal of Applied Chemistry, 2017, 90, 625-632.	0.5	0
89	Effects of kaolinite addition on the thermoplastic behaviour of coking coal during low temperature pyrolysis. Fuel Processing Technology, 2017, 167, 502-510.	7.2	13
90	Effects of drying method on self-heating behavior of lignite during low-temperature oxidation. Fuel Processing Technology, 2016, 151, 11-18.	7.2	24

#	Article	IF	Citations
91	The effects of pore structure on the behavior of water in lignite coal and activated carbon. Journal of Colloid and Interface Science, 2016, 477, 138-147.	9.4	38
92	Microwave-assisted catalytic pyrolysis of lignocellulosic biomass for production of phenolic-rich bio-oil. Bioresource Technology, 2016, 211, 382-389.	9.6	131
93	An experimental study on the formation of methoxyaromatics during pyrolysis of Eucalyptus pulverulenta: Yields and mechanisms. Bioresource Technology, 2016, 218, 743-750.	9.6	20
94	The influences of moisture on particle ignition behavior of Chinese and Indonesian lignite coals in hot air flow. Fuel Processing Technology, 2016, 153, 149-155.	7.2	32
95	Sulfidation and regeneration of iron-based sorbents supported on activated-chars prepared by pressurized impregnation for coke oven gas desulfurization. Korean Journal of Chemical Engineering, 2016, 33, 2849-2857.	2.7	5
96	Intrinsic kinetics of CO2 gasification of a Victorian coal char. Journal of Thermal Analysis and Calorimetry, 2016, 123, 1685-1694.	3.6	18
97	The effects of oxygen and metal oxide catalysts on the reduction reaction of NO with lignite char during combustion flue gas cleaning. Fuel Processing Technology, 2016, 152, 102-107.	7.2	30
98	Charâ€supported Feâ€"Znâ€"Cu sorbent prepared by ultrasonicâ€assisted impregnation for simultaneous removal of H ₂ S and COS from coke oven gas. Environmental Progress and Sustainable Energy, 2016, 35, 352-358.	2.3	4
99	Novel Calcium-Looping-Based Biomass-Integrated Gasification Combined Cycle: Thermodynamic Modeling and Experimental Study. Energy & Samp; Fuels, 2016, 30, 1730-1740.	5.1	19
100	Catalytic reduction of NO using iron oxide impregnated biomass and lignite char for flue gas treatment. Fuel Processing Technology, 2016, 148, 91-98.	7.2	31
101	The use of LDI-TOF imaging mass spectroscopy to study heated coal with a temperature gradient incorporating the plastic layer and semi-coke. Fuel, 2016, 165, 33-40.	6.4	17
102	Production of phenol-rich bio-oil during catalytic fixed-bed and microwave pyrolysis of palm kernel shell. Bioresource Technology, 2016, 207, 188-196.	9.6	141
103	Combustion characteristics and air pollutant formation during oxy-fuel co-combustion of microalgae and lignite. Bioresource Technology, 2016, 207, 276-284.	9.6	54
104	Process simulation of a near-zero-carbon-emission power plant using CO 2 as the renewable energy storage medium. International Journal of Greenhouse Gas Control, 2016, 47, 240-249.	4.6	15
105	An experimental study of direct reduction of hematite by lignite char. Journal of Thermal Analysis and Calorimetry, 2016, 123, 1111-1118.	3.6	12
106	Maceral separation from coal by the Reflux Classifier. Fuel Processing Technology, 2016, 143, 43-50.	7.2	28
107	An experimental study on synthesis of & Deta;-Sialon composites using fly ash and lignite char& Char& Society of Japan, 2015, 123, 542-549.	1.1	5
108	Controlled Synthesis of BiVO4 Submicrospheres and Their Photocatalytic Properties. Chemistry Letters, 2015, 44, 1098-1100.	1.3	6

#	Article	IF	CITATIONS
109	Desulfurization of coke oven gas using char-supported Fe-Zn-Mo catalysts: Mechanisms and thermodynamics. Korean Journal of Chemical Engineering, 2015, 32, 2227-2235.	2.7	5
110	Sulfidation Behavior of Fe-Zn Sorbents Supported on Lignite Char during Coke Oven Gas Desulfurization. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2015, 37, 2360-2366.	2.3	2
111	Regeneration of Fe–Zn–Cu Sorbents Supported on Activated Lignite Char for the Desulfurization of Coke Oven Gas. Energy & Fuels, 2015, 29, 7124-7134.	5.1	20
112	Experimental study on the self-heating characteristics of Indonesian lignite during low temperature oxidation. Fuel, 2015, 150, 55-63.	6.4	43
113	Ultrasonic-assisted preparation of highly reactive Fe–Zn sorbents supported on activated-char for desulfurization of COG. Fuel Processing Technology, 2015, 135, 187-194.	7.2	21
114	Novel ZnO–ZnS nanowire arrays with heterostructures and enhanced photocatalytic properties. CrystEngComm, 2015, 17, 6328-6337.	2.6	49
115	A mechanistic study on the synthesis of \hat{l}^2 -Sialon whiskers from coal fly ash. Materials Research Bulletin, 2015, 65, 47-52.	5.2	19
116	Lignite-derived high surface area mesoporous activated carbons for electrochemical capacitors. Fuel Processing Technology, 2015, 138, 734-742.	7. 2	73
117	A Comparative study of microwave-induced pyrolysis of lignocellulosic and algal biomass. Bioresource Technology, 2015, 190, 89-96.	9.6	108
118	Thermo-swelling Properties of Particle Size Cuts of Coal Maceral Concentrates. Energy & Energ	5.1	20
119	Comparative study on pyrolysis of lignocellulosic and algal biomass using a thermogravimetric and a fixed-bed reactor. Bioresource Technology, 2015, 175, 333-341.	9.6	209
120	Solvent extraction of Chinese lignite and chemical structure changes of the residue during H2O2 oxidation. Fuel Processing Technology, 2015, 129, 213-221.	7.2	43
121	An experimental study on thermal decomposition behavior of magnesite. Journal of Thermal Analysis and Calorimetry, 2014, 118, 1577-1584.	3.6	37
122	Co-pyrolysis of pine sawdust and lignite in a thermogravimetric analyzer and a fixed-bed reactor. Bioresource Technology, 2014, 174, 204-211.	9.6	126
123	A kinetic study of microwave and fluidized-bed drying of a Chinese lignite. Chemical Engineering Research and Design, 2014, 92, 54-65.	5.6	130
124	An experimental study on binderless briquetting of Chinese lignite: Effects of briquetting conditions. Fuel Processing Technology, 2014, 124, 243-248.	7.2	60
125	Characteristics of Chars from Low-Temperature Pyrolysis of Lignite. Energy & 2014, 28, 275-284.	5.1	145
126	Experimental Study on Microwave Pyrolysis of an Indonesian Low-Rank Coal. Energy & E	5.1	71

#	Article	IF	Citations
127	Coal Oxidation under Mild Conditions: Current Status and Applications. Chemical Engineering and Technology, 2014, 37, 1635-1644.	1.5	40
128	Sulfidation of Iron-Based Sorbents Supported on Activated Chars during the Desulfurization of Coke Oven Gases: Effects of Mo and Ce Addition. Energy & Energy & 2014, 28, 2481-2489.	5.1	16
129	Low-Temperature Oxidation Characteristics of Lignite Chars from Low-Temperature Pyrolysis. Energy & Low-Temperature Pyrolysis.	5.1	33
130	A differential scanning calorimetric (DSC) study on the characteristics and behavior of water in low-rank coals. Fuel, 2014, 135, 243-252.	6.4	71
131	Comparison of desulfurization characteristics of lignite char-supported Fe and Fe–Mo sorbents for hot gas cleaning. Fuel Processing Technology, 2014, 117, 17-22.	7.2	26
132	Thermogravimetric study of the combustion of Tetraselmis suecica microalgae and its blend with a Victorian brown coal in O2/N2 and O2/CO2 atmospheres. Bioresource Technology, 2013, 150, 15-27.	9.6	93
133	A review on water in low rank coals: The existence, interaction with coal structure and effects on coal utilization. Fuel Processing Technology, 2013, 106, 9-20.	7.2	555
134	Sulfur removal property of activated-char-supported Fe–Mo sorbents for integrated cleaning of hot coal gases. Fuel, 2013, 108, 91-98.	6.4	34
135	An Experimental Study on Binderless Briquetting of Lowâ€Rank Coals. Chemical Engineering and Technology, 2013, 36, 749-756.	1.5	25
136	Pyrolysis and Combustion Behavior of Coal Gangue in O ₂ /CO ₂ and O ₂ /N ₂ Mixtures Using Thermogravimetric Analysis and a Drop Tube Furnace. Energy & Samp; Fuels, 2013, 27, 2923-2932.	5.1	98
137	Chemical Structure Changes Accompanying Fluidized-Bed Drying of Victorian Brown Coals in Superheated Steam, Nitrogen, and Hot Air. Energy & Superheated Steam, Nitrogen, Nitrogen	5.1	83
138	Thermogravimetric study and modeling for the drying of a Chinese lignite. Asia-Pacific Journal of Chemical Engineering, 2013, 8, 793-803.	1.5	24
139	Methyl 4-(5-methoxy-1H-indol-3-yl)benzoate. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o133-o133.	0.2	0
140	2-(4-Fluorophenyl)quinoxaline. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o1779-o1779.	0.2	0
141	Study of Chemical Structure Changes of Chinese Lignite upon Drying in Superheated Steam, Microwave, and Hot Air. Energy & Study 26, 3651-3660.	5.1	180
142	Synthesis and photophysical characterization of orange-emitting iridium(III) complexes containing benzothiazole ligand. Synthetic Metals, 2012, 162, 497-502.	3.9	10
143	A study of chemical structure changes of Chinese lignite during fluidized-bed drying in nitrogen and air. Fuel Processing Technology, 2012, 101, 85-93.	7.2	155
144	Sulfidation of a Novel Iron Sorbent Supported on Lignite Chars during Hot Coal Gas Desulfurization. Physics Procedia, 2012, 24, 290-296.	1.2	8

#	Article	IF	CITATIONS
145	Effects of addition of Mo on the sulfidation properties of Fe-based sorbents supported on fly ash during hot coal gas desulfurization. Chemical Engineering Journal, 2011, 166, 362-367.	12.7	31
146	Correlation of H2S and COS in the hot coal gas stream and its importance for high temperature desulfurization. Korean Journal of Chemical Engineering, 2011, 28, 1054-1057.	2.7	15
147	Experimental study on microwave drying of Chinese and Indonesian low-rank coals. Fuel Processing Technology, 2011, 92, 1821-1829.	7.2	134
148	4-[4,5-Bis(pyridin-2-yl)-1H-imidazol-2-yl]phenol monohydrate. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o161-o161.	0.2	0
149	A review on research and development of iron-based sorbents for removal of hydrogen sulfide from hot coal gases. Frontiers of Chemical Engineering in China, 2010, 4, 529-535.	0.6	6
150	Removal of sulfur at high temperatures using iron-based sorbents supported on fine coal ash. Fuel, 2010, 89, 868-873.	6.4	69
151	Pyrolysis and Combustion Characteristics of an Indonesian Low-Rank Coal under O ₂ /N ₂ and O ₂ /CO ₂ Conditions ^{â€} . Energy & Fuels, 2010, 24, 160-164.	5.1	89
152	Experimental study on drying and moisture re-adsorption kinetics of an Indonesian low rank coal. Journal of Environmental Sciences, 2009, 21, S127-S130.	6.1	64
153	An overview on oxyfuel coal combustionâ€"State of the art research and technology development. Chemical Engineering Research and Design, 2009, 87, 1003-1016.	5.6	715
154	Novel Waterâ^'Gas-Shift Reaction Catalyst from Iron-Loaded Victorian Brown Coalâ€. Energy &	5.1	12
155	Conversion of Fuel-N into HCN and NH3During the Pyrolysis and Gasification in Steam: A Comparative Study of Coal and Biomassâ€. Energy & Fuels, 2007, 21, 517-521.	5.1	132
156	Formation of the structure of chars during devolatilization of pulverized coal and its thermoproperties: A review. Progress in Energy and Combustion Science, 2007, 33, 135-170.	31.2	351
157	Formation of HCN and NH3during the Reforming of Quinoline with Steam in a Fluidized-bed Reactor. Energy & Energ	5.1	12
158	Effect of iron on the gasification of Victorian brown coal with steam:enhancement of hydrogen production. Fuel, 2006, 85, 127-133.	6.4	95
159	Formation of NOx precursors during the pyrolysis of coal and biomass. Part IX. Effects of coal ash and externally loaded-Na on fuel-N conversion during the reforming of coal and biomass in steam. Fuel, 2006, 85, 1411-1417.	6.4	29
160	Char-Supported Nano Iron Catalyst for Water-Gas-Shift Reaction. Chemical Engineering Research and Design, 2006, 84, 125-130.	5 . 6	67
161	Formation of NO precursors during the pyrolysis of coal and biomass. Part VII. Pyrolysis and gasification of cane trash with steam. Fuel, 2005, 84, 371-376.	6.4	52
162	Formation of NO precursors during the pyrolysis of coal and biomass. Part VIII. Effects of pressure on the formation of NH and HCN during the pyrolysis and gasification of Victorian brown coal in steam. Fuel, 2005, 84, 2102-2108.	6.4	40

#	Article	IF	CITATIONS
163	Modeling the development of char structure during the rapid heating of pulverized coal. Combustion and Flame, 2004, 136, 519-532.	5.2	47
164	Effect of Pressure on Char Formation during Pyrolysis of Pulverized Coal. Energy & E	5.1	36
165	Swelling behaviour of individual coal particles in the single particle reactor. Fuel, 2003, 82, 1977-1987.	6.4	53
166	Coal and carbon nanotube production. Fuel, 2003, 82, 2025-2032.	6.4	41
167	Swelling and Char Structures from Density Fractions of Pulverized Coal. Energy & Samp; Fuels, 2003, 17, 1160-1174.	5.1	41
168	Simulating aero-engine performance and emissions characteristics running on green diesel. International Journal of Green Energy, 0 , 1 -6.	3.8	0