Kamalakannan Kailasam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5234851/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mesoporous carbon nitride–silica composites by a combined sol–gel/thermal condensation approach and their application as photocatalysts. Energy and Environmental Science, 2011, 4, 4668.	30.8	239
2	Covalent Triazine Frameworks as Heterogeneous Catalysts for the Synthesis of Cyclic and Linear Carbonates from Carbon Dioxide and Epoxides. ChemSusChem, 2012, 5, 1793-1799.	6.8	237
3	Merging Single-Atom-Dispersed Silver and Carbon Nitride to a Joint Electronic System <i>via</i> Copolymerization with Silver Tricyanomethanide. ACS Nano, 2016, 10, 3166-3175.	14.6	213
4	Supported Cobalt Oxide Nanoparticles As Catalyst for Aerobic Oxidation of Alcohols in Liquid Phase. ACS Catalysis, 2011, 1, 342-347.	11.2	184
5	Complementing Graphenes: 1D Interplanar Charge Transport in Polymeric Graphitic Carbon Nitrides. Advanced Materials, 2015, 27, 7993-7999.	21.0	153
6	Nickel as a co-catalyst for photocatalytic hydrogen evolution on graphitic-carbon nitride (sg-CN): what is the nature of the active species?. Chemical Communications, 2016, 52, 104-107.	4.1	147
7	Room Temperature Synthesis of Heptazineâ€Based Microporous Polymer Networks as Photocatalysts for Hydrogen Evolution. Macromolecular Rapid Communications, 2013, 34, 1008-1013.	3.9	134
8	Traversing the history of solid catalysts for heterogeneous synthesis of 5-hydroxymethylfurfural from carbohydrate sugars: A review. Renewable and Sustainable Energy Reviews, 2018, 82, 2408-2425.	16.4	127
9	An excellent humidity sensor based on In–SnO ₂ loaded mesoporous graphitic carbon nitride. Journal of Materials Chemistry A, 2017, 5, 14134-14143.	10.3	120
10	A porous, crystalline truxene-based covalent organic framework and its application in humidity sensing. Journal of Materials Chemistry A, 2017, 5, 21820-21827.	10.3	115
11	Adsorption removal of organic dyes on covalent triazine framework (CTF). Microporous and Mesoporous Materials, 2014, 187, 63-70.	4.4	111
12	Cubic mesoporous Ag@CN: a high performance humidity sensor. Nanoscale, 2016, 8, 19794-19803.	5.6	109
13	Structure–Activity Relationships in Bulk Polymeric and Sol–Gel-Derived Carbon Nitrides during Photocatalytic Hydrogen Production. Chemistry of Materials, 2014, 26, 1727-1733.	6.7	108
14	Natural Sunlight Driven Oxidative Homocoupling of Amines by a Truxene-Based Conjugated Microporous Polymer. ACS Catalysis, 2018, 8, 6751-6759.	11.2	106
15	Donor–Acceptorâ€Type Heptazineâ€Based Polymer Networks for Photocatalytic Hydrogen Evolution. Energy Technology, 2016, 4, 744-750.	3.8	102
16	Mesoporous Carbon Nitrideâ€Tungsten Oxide Composites for Enhanced Photocatalytic Hydrogen Evolution. ChemSusChem, 2015, 8, 1404-1410.	6.8	98
17	Visible light-driven simultaneous H ₂ production by water splitting coupled with selective oxidation of HMF to DFF catalyzed by porous carbon nitride. Journal of Materials Chemistry A, 2019, 7, 5643-5649.	10.3	92
18	Mesoporous Melamine Resins by Soft Templating of Block-co-Polymer Mesophases. Chemistry of Materials, 2010, 22, 428-434.	6.7	90

#	Article	IF	CITATIONS
19	Using nickel manganese oxide catalysts for efficient water oxidation. Chemical Communications, 2015, 51, 5005-5008.	4.1	89
20	A low temperature, highly sensitive and fast response toluene gas sensor based on In(III)-SnO2 loaded cubic mesoporous graphitic carbon nitride. Sensors and Actuators B: Chemical, 2018, 255, 3564-3575.	7.8	85
21	Quantification of photocatalytic hydrogen evolution. Physical Chemistry Chemical Physics, 2013, 15, 3466.	2.8	80
22	Near-Room-Temperature Ethanol Detection Using Ag-Loaded Mesoporous Carbon Nitrides. ACS Omega, 2017, 2, 3658-3668.	3.5	75
23	Metal-free visible light photocatalytic carbon nitride quantum dots as efficient antibacterial agents: An insight study. Carbon, 2019, 152, 587-597.	10.3	71
24	Insights into g-C ₃ N ₄ as a chemi-resistive gas sensor for VOCs and humidity – a review of the state of the art and recent advancements. Journal of Materials Chemistry A, 2021, 9, 10612-10651.	10.3	65
25	High-Surface-Area SBA-15 with Enhanced Mesopore Connectivity by the Addition of Poly(vinyl alcohol). Chemistry of Materials, 2011, 23, 2062-2067.	6.7	63
26	Heptazine based organic framework as a chemiresistive sensor for ammonia detection at room temperature. Journal of Materials Chemistry A, 2018, 6, 18389-18395.	10.3	61
27	Organic motif's functionalization via covalent linkage in carbon nitride: An exemplification in photocatalysis. Carbon, 2019, 152, 40-58.	10.3	54
28	A true oxygen-linked heptazine based polymer for efficient hydrogen evolution. Applied Catalysis B: Environmental, 2019, 244, 313-319.	20.2	54
29	Recent developments in biomass derived cellulose aerogel materials for thermal insulation application: a review. Cellulose, 2022, 29, 4805-4833.	4.9	39
30	Controlling hydrogenation selectivity with Pd catalysts on carbon nitrides functionalized silica. Journal of Catalysis, 2015, 326, 38-42.	6.2	36
31	Synthesis of efficient photocatalysts for water oxidation and dye degradation reactions using CoCl ₂ eutectics. Journal of Materials Chemistry A, 2015, 3, 21227-21232.	10.3	36
32	Synergistic effect of a noble metal free Ni(OH) ₂ co-catalyst and a ternary ZnIn ₂ S ₄ /g-C ₃ N ₄ heterojunction for enhanced visible light photocatalytic hydrogen evolution. Sustainable Energy and Fuels, 2020, 4, 750-759.	4.9	34
33	Physico-chemical characterization of MCM-41 silica spheres made by the pseudomorphic route and grafted with octadecyl chains. Journal of Chromatography A, 2008, 1191, 125-135.	3.7	31
34	Emergence of <i>s</i> -heptazines: from trichloro- <i>s</i> -heptazine building blocks to functional materials. Journal of Materials Chemistry A, 2018, 6, 21719-21728.	10.3	30
35	Hydrogen-bond mediated columnar liquid crystalline assemblies of <i>C</i> ₃ -symmetric heptazine derivatives at ambient temperature. Soft Matter, 2018, 14, 6342-6352.	2.7	30
36	Single molecular precursors for CxNy materials- Blending of carbon and nitrogen beyond g-C3N4. Carbon, 2021, 183, 332-354.	10.3	30

#	Article	IF	CITATIONS
37	Heptazine: an Electronâ€Deficient Fluorescent Core for Discotic Liquid Crystals. Chemistry - A European Journal, 2017, 23, 14718-14722.	3.3	29
38	Deepâ€Blue OLED Fabrication from Heptazine Columnar Liquid Crystal Based AlEâ€Active Skyâ€Blue Emitter. ChemistrySelect, 2018, 3, 7771-7777.	1.5	27
39	Octadecyl grafted MCM-41 silica spheres using trifunctionalsilane precursors $\hat{a} \in $ preparation and characterization. Microporous and Mesoporous Materials, 2009, 117, 136-147.	4.4	22
40	High-performing D–ï€â€"A–ï€â€"D benzothiadiazole-based hybrid local and charge-transfer emitters in solution-processed OLEDs. Journal of Materials Chemistry C, 2020, 8, 17009-17015.	5.5	19
41	Magnetic and Photocatalytic Curcumin Bound Carbon Nitride Nanohybrids for Enhanced Glioma Cell Death. ACS Biomaterials Science and Engineering, 2019, 5, 6590-6601.	5.2	18
42	Oxygen Deficient WO3–x Nanorods and g-CN Nanosheets Heterojunctions: A 1D–2D Interface with Engineered Band Structure for Cyclohexanol Oxidation in Visible Light. ACS Applied Energy Materials, 2020, 3, 4669-4676.	5.1	18
43	Designing nanofibrillar cellulose peptide conjugated polymeric hydrogel scaffold for controlling cellular behaviour. Cellulose, 2021, 28, 10335-10357.	4.9	16
44	Photocatalytic integrated production of hydrogen and imines from aromatic amines via Ni-mesoporous carbon nitride: An acceptorless dehydrogenative pathway. Journal of Cleaner Production, 2021, 307, 127162.	9.3	14
45	A metal-free heptazine–porphyrin based porous polymeric network as an artificial leaf for carbon-free solar fuels. Journal of Materials Chemistry A, 2022, 10, 14568-14575.	10.3	14
46	XPS studies on dispersed and immobilised carbon nitrides used for dye degradation. Photochemical and Photobiological Sciences, 2019, 18, 1833-1839.	2.9	13
47	Photocatalytic valorization of furfural to value-added chemicals <i>via</i> mesoporous carbon nitride: a possibility through a metal-free pathway. Catalysis Science and Technology, 2022, 12, 144-153.	4.1	13
48	Fourier transform infrared spectroscopy and solid-state nuclear magnetic resonance studies of octadecyl modified metal oxides obtained from different silane precursors. Journal of Chromatography A, 2009, 1216, 2345-2354.	3.7	12
49	Ru quantum dots decorated graphitic carbon nitride (Ru-QDs@g-CN) for chemi-resistive sensing of 3-methyl-1-butanol at room temperature. Sensors and Actuators B: Chemical, 2022, 368, 132060.	7.8	12
50	Quantum dot-sensitized O-linked heptazine polymer photocatalyst for the metal-free visible light hydrogen generation. RSC Advances, 2020, 10, 29633-29641.	3.6	10
51	A Tailored Heptazineâ€Based Porous Polymeric Network as a Versatile Heterogeneous (Photo)catalyst. Chemistry - A European Journal, 2021, 27, 10649-10656.	3.3	9
52	Solar driven photocatalytic hydrogen evolution using graphitic-carbon nitride/NSGQDs heterostructures. Applied Surface Science, 2021, 563, 150409.	6.1	9
53	Nontoxic Metal-Free Visible Light-Responsive Carbon Nitride Quantum Dots Cause Oxidative Stress and Cancer-Specific Membrane Damage. ACS Applied Bio Materials, 2022, 5, 1169-1178.	4.6	9
54	A critical review on emerging photocatalysts for syngas generation <i>via</i> CO ₂ reduction under aqueous media: a sustainable paradigm. Materials Advances, 2022, 3, 5274-5298.	5.4	9

#	Article	IF	CITATIONS
55	S,Nâ€GQDs Enzyme Mimicked Electrochemical Sensor to Detect the Hazardous Level of Monocrotophos in Water. Electroanalysis, 2020, 32, 971-977.	2.9	8
56	Metal-Free Heptazine-Based Porous Polymeric Network as Highly Efficient Catalyst for CO2 Capture and Conversion. Frontiers in Chemistry, 2021, 9, 737511.	3.6	8
57	Understanding the role of soft linkers in designing hepatzine-based polymeric frameworks as heterogeneous (photo)catalyst. Journal of Colloid and Interface Science, 2021, 588, 138-146.	9.4	7
58	A metal-free mesoporous g-C3N4 nanosheets for selective and sensitive recognition of ethanol at room temperature. Sensors and Actuators B: Chemical, 2021, 349, 130828.	7.8	7
59	Alkyl chain grafting on silica–zirconia mixed oxides: preparation and characterization. Journal of Materials Chemistry, 2010, 20, 2345.	6.7	5
60	Nontoxic In Vivo Clearable Nanoparticle Clusters for Theranostic Applications. ACS Biomaterials Science and Engineering, 2022, 8, 2053-2065.	5.2	5
61	Development of a Reactor for Standardized Quantification of the Photocatalytic Hydrogen Production. Chemie-Ingenieur-Technik, 2013, 85, 500-507.	0.8	4
62	Solvents effects on the conformational order of triacontyl modified silica gels as evaluated by Fourier transform infrared spectroscopy. Journal of Chromatography A, 2006, 1134, 81-87.	3.7	3
63	Graphene: Complementing Graphenes: 1D Interplanar Charge Transport in Polymeric Graphitic Carbon Nitrides (Adv. Mater. 48/2015). Advanced Materials, 2015, 27, 7992-7992.	21.0	3
64	A Light(er) Approach for the Selective Hydrogenation of 5â€Hydroxymethylfurfural to 2,5â€Bis(hydroxymethyl)furan without External H ₂ . ChemSusChem, 2022, 15, .	6.8	2
65	Biodegradable Protein-Stabilized Inorganic Nanoassemblies for Photothermal Radiotherapy of Hepatoma Cells. ACS Omega, 2022, 7, 8928-8937.	3.5	1