
Taisa N Pansani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5234811/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulation of interleukin-6 and matrix metalloproteinases syntheses by bioflavonoids and photobiomodulation in human gingival fibroblasts. Lasers in Medical Science, 2022, 37, 2973-2987.	2.1	4
2	Photobiomodulation using LLLT and LED of cells involved in osseointegration and peri-implant soft tissue healing. Lasers in Medical Science, 2021, , 1.	2.1	1
3	Effects of EGF-coated titanium surfaces on adhesion and metabolism of bisphosphonate-treated human keratinocytes and gingival fibroblasts. Clinical Oral Investigations, 2021, 25, 5775-5784.	3.0	2
4	Extracellular Vesicle-Based Coatings Enhance Bioactivity of Titanium Implants—SurfEV. Nanomaterials, 2021, 11, 1445.	4.1	7
5	New Multiscale Characterization Methodology for Effective Determination of Isolation–Structure–Function Relationship of Extracellular Vesicles. Frontiers in Bioengineering and Biotechnology, 2021, 9, 669537.	4.1	7
6	Chemotherapy drugs and inflammatory cytokines enhance matrix metalloproteinases expression by oral mucosa cells. Archives of Oral Biology, 2021, 127, 105159.	1.8	8
7	Influence of bisphosphonates on oral implantology: Sodium alendronate and zoledronic acid enhance the synthesis and activity of matrix metalloproteinases by gingival fibroblasts seeded on titanium. Archives of Oral Biology, 2021, 127, 105134.	1.8	5
8	Synergistic potential of 1α,25-dihydroxyvitamin D3 and calcium–aluminate–chitosan scaffolds with dental pulp cells. Clinical Oral Investigations, 2020, 24, 663-674.	3.0	31
9	In vitro effects of photobiomodulation applied to gingival fibroblasts cultured on titanium and zirconia surfaces and exposed to LPS from Escherichia coli. Lasers in Medical Science, 2020, 35, 2031-2038.	2.1	3
10	Photobiomodulation of inflammatory-cytokine-related effects in a 3-D culture model with gingival fibroblasts. Lasers in Medical Science, 2020, 35, 1205-1212.	2.1	13
11	Cytotoxicity of acrylic resin-based materials used to fabricate interim crowns. Journal of Prosthetic Dentistry, 2020, 124, 122.e1-122.e9.	2.8	9
12	Influence of Bisphosphonates on the Behavior of Osteoblasts Seeded Onto Titanium Discs. Brazilian Dental Journal, 2020, 31, 304-309.	1.1	5
13	Characterization of titanium surface coated with epidermal growth factor and its effect on human gingival fibroblasts. Archives of Oral Biology, 2019, 102, 48-54.	1.8	16
14	Photobiomodulation in the Metabolism of Lipopolysaccharidesâ€exposed Epithelial Cells and Gingival Fibroblasts. Photochemistry and Photobiology, 2018, 94, 598-603.	2.5	8
15	Epithelial cell-enhanced metabolism by low-level laser therapy and epidermal growth factor. Lasers in Medical Science, 2018, 33, 445-449.	2.1	22
16	Influence of bisphosphonates on the adherence and metabolism of epithelial cells and gingival fibroblasts to titanium surfaces. Clinical Oral Investigations, 2018, 22, 893-900.	3.0	16
17	LLLT Effects on Oral Keratinocytes in an Organotypic 3D Model. Photochemistry and Photobiology, 2018, 94, 190-194.	2.5	10
18	Phenotypic markers of oral keratinocytes seeded on two distinct 3D oral mucosa models. Toxicology in Vitro, 2018, 51, 34-39.	2.4	7

Taisa N Pansani

#	Article	IF	CITATIONS
19	Effects of low-level laser therapy and epidermal growth factor on the activities of gingival fibroblasts obtained from young or elderly individuals. Lasers in Medical Science, 2017, 32, 45-52.	2.1	18
20	Functional Differences In Gingival Fibroblasts Obtained from Young and Elderly Individuals. Brazilian Dental Journal, 2016, 27, 485-491.	1.1	8
21	Response of a co-culture model of epithelial cells and gingival fibroblasts to zoledronic acid. Brazilian Oral Research, 2016, 30, e122.	1.4	9
22	Tumor Necrosis Factorâ€Î± and Interleukin (IL)â€1β, ILâ€6, and ILâ€8 Impair In Vitro Migration and Induce Apopto of Gingival Fibroblasts and Epithelial Cells, Delaying Wound Healing. Journal of Periodontology, 2016, 87, 990-996.	osis 3.4	49
23	Indirect cytocompatibility of a lowâ€concentration hydrogen peroxide bleaching gel to odontoblastâ€like cells. International Endodontic Journal, 2016, 49, 26-36.	5.0	20
24	Proliferation, migration, and expression of oralâ€mucosalâ€healingâ€related genes by oral fibroblasts receiving lowâ€level laser therapy after inflammatory cytokines challenge. Lasers in Surgery and Medicine, 2016, 48, 1006-1014.	2.1	57
25	Influence of Restoration Type on the Cytotoxicity of a 35% Hydrogen Peroxide Bleaching Gel. Operative Dentistry, 2016, 41, 293-304.	1.2	7
26	Effect of LPS treatment on the viability and chemokine synthesis by epithelial cells and gingival fibroblasts. Archives of Oral Biology, 2015, 60, 1117-1121.	1.8	30
27	Biomodulation of Inflammatory Cytokines Related to Oral Mucositis by Lowâ€Level Laser Therapy. Photochemistry and Photobiology, 2015, 91, 952-956.	2.5	43
28	Effects of low-level laser therapy on the proliferation and apoptosis of gingival fibroblasts treated with zoledronic acid. International Journal of Oral and Maxillofacial Surgery, 2014, 43, 1030-1034.	1.5	23
29	Biostimulatory effects of low-level laser therapy on epithelial cells and gingival fibroblasts treated with zoledronic acid. Laser Physics, 2013, 23, 055601.	1.2	4
30	Cytotoxic Effects of Zoledronic Acid on Human Epithelial Cells and Gingival Fibroblasts. Brazilian Dental Journal, 2013, 24, 551-558.	1.1	25
31	In Vitro Wound Healing Improvement by Low-Level Laser Therapy Application in Cultured Gingival Fibroblasts. International Journal of Dentistry, 2012, 2012, 1-6.	1.5	108