
Minh Thang Le

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/523465/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of Aluminum Sources on Synthesis of SAPO-34 and NH3-SCR of NOx by as-Prepared Cu/SAPO-34 Catalysts. Catalysis in Industry, 2021, 13, 27-37.	0.3	0
2	Hybrid Cu-Fe/ZSM-5 Catalyst Prepared by Liquid Ion-Exchange for NOx Removal by NH3-SCR Process. Journal of Chemistry, 2021, 2021, 1-15.	0.9	1
3	Insight into the properties of MnO2-Co3O4-CeO2 catalyst series for the selective catalytic reduction of NOx by C3H6 and NH3. Science of the Total Environment, 2021, 784, 147394.	3.9	17
4	The influence of supports on Rhâ€TPPTS supported ionic liquidâ€phase catalysts for the hydroformylation of ethylene**. ChemistrySelect, 2021, 6, 9888-9893.	0.7	3
5	The Impact of the Third Mission on Teaching and Research Performance: Evidence From Academic Scholars in an Emerging Country. SAGE Open, 2021, 11, 215824402110544.	0.8	1
6	Photocatalytic Degradation of Phenol and Methyl Orange with Titania-Based Photocatalysts Synthesized by Various Methods in Comparison with ZnO–Graphene Oxide Composite. Topics in Catalysis, 2020, 63, 1215-1226.	1.3	12
7	Zeotype SAPOâ€34 Synthesized by Combination of Templates for the Gasification of Biomass. Chemical Engineering and Technology, 2020, 43, 731-741.	0.9	3
8	Upgrading of Bio-oil from Biomass Pyrolysis: Current Status and Future Development. , 2020, , 317-353.		8
9	Copper-Iron Bimetal Ion-Exchanged SAPO-34 for NH3-SCR of NOx. Catalysts, 2020, 10, 321.	1.6	12
10	Recent Advances in Steam Reforming of Glycerol for Syngas Production. , 2020, , 399-425.		8
11	Synthesis of SAPO-34 Using Different Combinations of Organic Structure-Directing Agents. Journal of Chemistry, 2019, 2019, 1-10.	0.9	23
12	Synthesis of TiO 2 on different substrates by chemical vapor deposition for photocatalytic reduction of Cr(VI) in water. Journal of the Chinese Chemical Society, 2019, 66, 1713-1720.	0.8	13
13	Bismuth Molybdate-Based Catalysts for Selective Oxidation of Hydrocarbons. , 2018, , .		1
14	Sol–Gel Synthesis of Bismuth Molybdate Catalysts for the Selective Oxidation of Propylene to Acrolein: Influence of pH Value and Theoretical Molar Atomic Ratio. Journal of the Chinese Chemical Society, 2017, 64, 1326-1332.	0.8	9
15	Synergy Effects of the Mixture of Bismuth Molybdate Catalysts with SnO ₂ /ZrO ₂ /MgO in Selective Propene Oxidation and the Connection between Conductivity and Catalytic Activity. Industrial & Engineering Chemistry Research, 2016, 55, 4846-4855.	1.8	30
16	The Application of High Surface Area Cordierite Synthesized from Kaolin as a Substrate for Auto Exhaust Catalysts. Journal of the Chinese Chemical Society, 2015, 62, 536-546.	0.8	1
17	Role of shaping in the preparation of heterogeneous catalysts: Tableting and slip-casting of oxidation catalysts. Catalysis Today, 2015, 246, 81-91.	2.2	25
18	Ceo2 Based Catalysts for the Treatment of Propylene in Motorcycle's Exhaust Gases. Materials, 2014, 7, 7379-7397.	1.3	12

Minh Thang Le

#	Article	IF	CITATIONS
19	The Influence of Deposition Methods of Support Layer on Cordierite Substrate on the Characteristics of a MnO2–NiO–Co3O4/Ce0.2Zr0.8O2/Cordierite Three Way Catalyst. Materials, 2014, 7, 6237-6253.	1.3	3
20	Activated MnO2-Co3O4-CeO2 catalysts for the treatment of CO at room temperature. Applied Catalysis A: General, 2014, 480, 34-41.	2.2	22
21	Deposition of a Cu/Mo/Ce catalyst for diesel soot oxidation on a sintered metal fiber filter with a CeO2 anti corrosion coating. Catalysis Communications, 2012, 25, 111-117.	1.6	11
22	Characterization and parametrical study of Rh-TPPTS supported ionic liquid phase (SILP) catalysts for ethylene hydroformylation. Catalysis Communications, 2012, 25, 136-141.	1.6	32
23	Synergy effects in mixed Bi2O3, MoO3 and V2O5 catalysts for selective oxidation of propylene. Research on Chemical Intermediates, 2012, 38, 829-846.	1.3	8
24	Influence of Graphite as a Shaping Agent of Bi Molybdate Powders on Their Mechanical, Physicochemical, and Catalytic Properties. Industrial & Engineering Chemistry Research, 2011, 50, 5467-5477.	1.8	15
25	Selective oxidation of propylene to acrolein by silica-supported bismuth molybdate catalysts. Research on Chemical Intermediates, 2011, 37, 605-616.	1.3	7
26	Structure and electrical conductivity of multicomponent metal oxides having scheelite structure. Russian Journal of Electrochemistry, 2009, 45, 621-629.	0.3	23
27	The synergy effect between gamma and beta phase of bismuth molybdate catalysts: Is there any relation between conductivity and catalytic activity?. Catalysis Today, 2008, 131, 566-571.	2.2	36
28	The influence of the calcination conditions on the catalytic activity of Bi2MoO6 in the selective oxidation of propylene to acrolein. Journal of Molecular Catalysis A, 2006, 256, 1-8.	4.8	30
29	Pulsed laser deposition and dip-coating techniques in the fabrication of bismuth molybdate gas sensors. Thin Solid Films, 2006, 497, 284-291.	0.8	16
30	Synergy effects between bismuth molybdate catalyst phases (Bi/Mo from 0.57 to 2) for the selective oxidation of propylene to arcrolein. Applied Catalysis A: General, 2005, 282, 189-194.	2.2	35
31	Phase Composition and Charge Transport in Bismuth Molybdates. Russian Journal of Electrochemistry, 2005, 41, 455-460.	0.3	10
32	Spray Drying, a Versatile Synthetic Method to Control Purity in Single Phases and Mixed Phases of Bismuth Molybdates. Canadian Journal of Chemical Engineering, 2005, 83, 336-343.	0.9	12
33	Influence of organic species on surface area of bismuth molybdate catalysts in complexation and spray drying methods. Applied Catalysis A: General, 2004, 267, 227-234.	2.2	52
34	Bismuth molybdate catalysts synthesized using spray drying for the selective oxidation of propylene. Applied Catalysis A: General, 2003, 249, 355-364.	2.2	62