
Christoph Englert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5234633/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aging Activates the Immune System and Alters the Regenerative Capacity in the Zebrafish Heart. Cells, 2022, 11, 345.	1.8	7
2	Wt1 transcription factor impairs cardiomyocyte specification and drives a phenotypic switch from myocardium to epicardium. Development (Cambridge), 2022, 149, .	1.2	5
3	Systems Analysis Reveals Ageing-Related Perturbations in Retinoids and Sex Hormones in Alzheimer's and Parkinson's Diseases. Biomedicines, 2021, 9, 1310.	1.4	8
4	The Wilms Tumor Gene wt1a Contributes to Blood-Cerebrospinal Fluid Barrier Function in Zebrafish. Frontiers in Cell and Developmental Biology, 2021, 9, 809962.	1.8	0
5	Wt1 Positive dB4 Neurons in the Hindbrain Are Crucial for Respiration. Frontiers in Neuroscience, 2020, 14, 529487.	1.4	8
6	Zebrafish Wtx is a negative regulator of Wnt signaling but is dispensable for embryonic development and organ homeostasis. Developmental Dynamics, 2019, 248, 866-881.	0.8	5
7	Wilms Tumor 1b Expression Defines a Pro-regenerative Macrophage Subtype and Is Required for Organ Regeneration in the Zebrafish. Cell Reports, 2019, 28, 1296-1306.e6.	2.9	61
8	Transcriptomic alterations during ageing reflect the shift from cancer to degenerative diseases in the elderly. Nature Communications, 2018, 9, 327.	5.8	94
9	The African turquoise killifish Nothobranchius furzeri as a model for aging research. Drug Discovery Today: Disease Models, 2018, 27, 15-22.	1.2	7
10	Temperature throws a developmental switch. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12553-12555.	3.3	2
11	Wilms Tumor 1b defines a wound-specific sheath cell subpopulation associated with notochord repair. ELife, 2018, 7, .	2.8	21
12	Dispersion/reaggregation in early development of annual killifishes: Phylogenetic distribution and evolutionary significance of a unique feature. Developmental Biology, 2018, 442, 69-79.	0.9	10
13	Neuron-specific inactivation of <i>Wt1</i> alters locomotion in mice and changes interneuron composition in the spinal cord. Life Science Alliance, 2018, 1, e201800106.	1.3	28
14	Nothobranchius furzeri: A Model for Aging Research and More. Trends in Genetics, 2016, 32, 543-552.	2.9	72
15	Analysis of Zebrafish Kidney Development with Time-lapse Imaging Using a Dissecting Microscope Equipped for Optical Sectioning. Journal of Visualized Experiments, 2016, , e53921.	0.2	2
16	Longitudinal RNA-Seq Analysis of Vertebrate Aging Identifies Mitochondrial Complex I as a Small-Molecule-Sensitive Modifier of Lifespan. Cell Systems, 2016, 2, 122-132.	2.9	155
17	Ageâ€dependent decline in fin regenerative capacity in the shortâ€lived fish <i>Nothobranchius furzeri</i> . Aging Cell, 2015, 14, 857-866.	3.0	66
18	Insights into Sex Chromosome Evolution and Aging from the Genome of a Short-Lived Fish. Cell, 2015, 163, 1527-1538.	13.5	251

#	Article	IF	CITATIONS
19	Integration of Cistromic and Transcriptomic Analyses Identifies Nphs2, Mafb, and Magi2 as Wilms' Tumor 1 Target Genes in Podocyte Differentiation and Maintenance. Journal of the American Society of Nephrology: JASN, 2015, 26, 2118-2128.	3.0	67
20	Alternative splicing of Wilms tumor suppressor 1 (Wt1) exon 4 results in protein isoforms with different functions. Developmental Biology, 2014, 393, 24-32.	0.9	12
21	Absence of replicative senescence in cultured cells from the short-lived killifish Nothobranchius furzeri. Experimental Gerontology, 2013, 48, 17-28.	1.2	30
22	Focal segmental glomerulosclerosis is induced by microRNA-193a and its downregulation of WT1. Nature Medicine, 2013, 19, 481-487.	15.2	199
23	Mapping of quantitative trait loci controlling lifespan in the shortâ€lived fish <i>Nothobranchius furzeri</i> – a new vertebrate model for age research. Aging Cell, 2012, 11, 252-261.	3.0	72
24	A microinjection protocol for the generation of transgenic killifish (Species: <i>Nothobranchius) Tj ETQq0 0 0 rg</i>	BT /Overlo	ck 10 Tf 50 54

25	Mitochondrial DNA copy number and function decrease with age in the shortâ€lived fish <i>Nothobranchius furzeri</i> . Aging Cell, 2011, 10, 824-831.	3.0	114
26	Identification of adult nephron progenitors capable of kidney regeneration in zebrafish. Nature, 2011, 470, 95-100.	13.7	258
27	A highly conserved retinoic acid responsive element controls <i>wt1a</i> expression in the zebrafish pronephros. Development (Cambridge), 2009, 136, 2883-2892.	1.2	86
28	Mapping Loci Associated With Tail Color and Sex Determination in the Short-Lived Fish <i>Nothobranchius furzeri</i> . Genetics, 2009, 183, 1385-1395.	1.2	67
29	Telomeres shorten while Tert expression increases during ageing of the short-lived fish Nothobranchius furzeri. Mechanisms of Ageing and Development, 2009, 130, 290-296.	2.2	115
30	High tandem repeat content in the genome of the short-lived annual fish Nothobranchius furzeri: a new vertebrate model for aging research. Genome Biology, 2009, 10, R16.	13.9	87
31	The Wilms tumor genes wt1a and wt1b control different steps during formation of the zebrafish pronephros. Developmental Biology, 2007, 309, 87-96.	0.9	254
32	Identification and comparative expression analysis of a secondwt1 gene in zebrafish. Developmental Dynamics, 2006, 235, 554-561.	0.8	84
33	The Wilms' tumor geneWt1is required for normal development of the retina. EMBO Journal, 2002, 21, 1398-1405.	3.5	135
34	The Wilms tumor suppressor gene wt1 is required for development of the spleen. Current Biology, 1999, 9, 837-S1.	1.8	193