Antonio Benito Fuertes

List of Publications by Citations

Source: https://exaly.com/author-pdf/5234560/antonio-benito-fuertes-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

18,228 130 224 70 h-index g-index citations papers 8.1 19,842 229 7.41 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
224	The production of carbon materials by hydrothermal carbonization of cellulose. <i>Carbon</i> , 2009 , 47, 2281	-2128.19	1270
223	Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. <i>Chemistry - A European Journal</i> , 2009 , 15, 4195-203	4.8	986
222	Sustainable porous carbons with a superior performance for CO2 capture. <i>Energy and Environmental Science</i> , 2011 , 4, 1765	35.4	749
221	N-Doped Polypyrrole-Based Porous Carbons for CO2 Capture. <i>Advanced Functional Materials</i> , 2011 , 21, 2781-2787	15.6	749
220	Direct synthesis of highly porous interconnected carbon nanosheets and their application as high-performance supercapacitors. <i>ACS Nano</i> , 2014 , 8, 5069-78	16.7	540
219	Hydrothermal Carbonization of Abundant Renewable Natural Organic Chemicals for High-Performance Supercapacitor Electrodes. <i>Advanced Energy Materials</i> , 2011 , 1, 356-361	21.8	470
218	Catalytic graphitization of templated mesoporous carbons. <i>Carbon</i> , 2006 , 44, 468-474	10.4	380
217	Templated mesoporous carbons for supercapacitor application. <i>Electrochimica Acta</i> , 2005 , 50, 2799-280	0 5 6.7	362
216	Polypyrrole-Derived Activated Carbons for High-Performance Electrical Double-Layer Capacitors with Ionic Liquid Electrolyte. <i>Advanced Functional Materials</i> , 2012 , 22, 827-834	15.6	359
215	Fe-N-Doped Carbon Capsules with Outstanding Electrochemical Performance and Stability for the Oxygen Reduction Reaction in Both Acid and Alkaline Conditions. <i>ACS Nano</i> , 2016 , 10, 5922-32	16.7	345
214	High density hydrogen storage in superactivated carbons from hydrothermally carbonized renewable organic materials. <i>Energy and Environmental Science</i> , 2011 , 4, 1400	35.4	339
213	Assessment of the role of micropore size and N-doping in CO2 capture by porous carbons. <i>ACS Applied Materials & Doping in CO2 Capture by Property Academy</i> (1988) 10	9.5	265
212	Hydrothermal carbonization of biomass as a route for the sequestration of CO2: Chemical and structural properties of the carbonized products. <i>Biomass and Bioenergy</i> , 2011 , 35, 3152-3159	5.3	263
211	Sulfur-containing activated carbons with greatly reduced content of bottle neck pores for double-layer capacitors: a case study for pseudocapacitance detection. <i>Energy and Environmental Science</i> , 2013 , 6, 2465	35.4	262
210	Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover. <i>Soil Research</i> , 2010 , 48, 618	1.8	253
209	Influence of pore structure on electric double-layer capacitance of template mesoporous carbons. Journal of Power Sources, 2004 , 133, 329-336	8.9	250
208	High-performance CO2 sorbents from algae. <i>RSC Advances</i> , 2012 , 2, 12792	3.7	194

(2013-2015)

207	Hierarchical microporous/mesoporous carbon nanosheets for high-performance supercapacitors. <i>ACS Applied Materials & Discrete Supercapacitors</i> , 7, 4344-53	9.5	187
206	Supported carbon molecular sieve membranes based on a phenolic resin. <i>Journal of Membrane Science</i> , 1999 , 160, 201-211	9.6	186
205	N-doped porous carbon capsules with tunable porosity for high-performance supercapacitors. Journal of Materials Chemistry A, 2015 , 3, 2914-2923	13	175
204	One-step synthesis of silica@resorcinol-formaldehyde spheres and their application for the fabrication of polymer and carbon capsules. <i>Chemical Communications</i> , 2012 , 48, 6124-6	5.8	174
203	CO2 adsorption by activated templated carbons. <i>Journal of Colloid and Interface Science</i> , 2012 , 366, 147	'- 95 4	169
202	Graphitic mesoporous carbons synthesised through mesostructured silica templates. <i>Carbon</i> , 2004 , 42, 3049-3055	10.4	159
201	The influence of pore size distribution on the oxygen reduction reaction performance in nitrogen doped carbon microspheres. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 2581-2589	13	158
200	Beyond KOH activation for the synthesis of superactivated carbons from hydrochar. <i>Carbon</i> , 2017 , 114, 50-58	10.4	154
199	Highly active and selective CuOx/CeO2 catalyst prepared by a single-step citrate method for preferential oxidation of carbon monoxide. <i>Applied Catalysis B: Environmental</i> , 2005 , 57, 43-53	21.8	152
198	Efficient metal-free N-doped mesoporous carbon catalysts for ORR by a template-free approach. <i>Carbon</i> , 2016 , 106, 179-187	10.4	149
197	Mesoporous carbons with graphitic structures fabricated by using porous silica materials as templates and iron-impregnated polypyrrole as precursor. <i>Journal of Materials Chemistry</i> , 2005 , 15, 107	9	137
196	Mechanism of low-temperature selective catalytic reduction of NO withBNH3 over carbon-supported Mn3O4Role of surface NH3 species: SCR mechanism. <i>Journal of Catalysis</i> , 2004 , 226, 138-155	7.3	136
195	Ultrahigh surface area polypyrrole-based carbons with superior performance for hydrogen storage. <i>Energy and Environmental Science</i> , 2011 , 4, 2930	35.4	132
194	Hydrothermal synthesis of microalgae-derived microporous carbons for electrochemical capacitors. <i>Journal of Power Sources</i> , 2014 , 267, 26-32	8.9	131
193	Synthesis of ordered nanoporous carbons of tunable mesopore size by templating SBA-15 silica materials. <i>Microporous and Mesoporous Materials</i> , 2004 , 67, 273-281	5.3	126
192	Carbon composite membranes from Matrimid and Kapton polyimides for gas separation. <i>Microporous and Mesoporous Materials</i> , 1999 , 33, 115-125	5.3	125
191	A Green Approach to High-Performance Supercapacitor Electrodes: The Chemical Activation of Hydrochar with Potassium Bicarbonate. <i>ChemSusChem</i> , 2016 , 9, 1880-8	8.3	124
190	Fabrication of porous carbon monoliths with a graphitic framework. <i>Carbon</i> , 2013 , 56, 155-166	10.4	121

189	Synthesis of Graphitic Carbon Nanostructures from Sawdust and Their Application as Electrocatalyst Supports. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 9749-9756	3.8	120
188	Control of mesoporous structure of carbons synthesised using a mesostructured silica as template. <i>Microporous and Mesoporous Materials</i> , 2003 , 62, 177-190	5.3	117
187	A general and facile synthesis strategy towards highly porous carbons: carbonization of organic salts. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 13738	13	113
186	Template synthesis of mesoporous carbons with a controlled particle size. <i>Journal of Materials Chemistry</i> , 2003 , 13, 3085		110
185	From Soybean residue to advanced supercapacitors. <i>Scientific Reports</i> , 2015 , 5, 16618	4.9	109
184	Preparation of supported asymmetric carbon molecular sieve membranes. <i>Journal of Membrane Science</i> , 1998 , 144, 105-111	9.6	109
183	Performance of templated mesoporous carbons in supercapacitors. <i>Electrochimica Acta</i> , 2007 , 52, 3207	- 3 62 / 15	106
182	Graphitic carbon nanostructures from cellulose. <i>Chemical Physics Letters</i> , 2010 , 490, 63-68	2.5	104
181	High-surface area inorganic compounds prepared by nanocasting techniques. <i>Materials Research Bulletin</i> , 2006 , 41, 2187-2197	5.1	103
180	Effects of phenolic resin pyrolysis conditions on carbon membrane performance for gas separation. Journal of Membrane Science, 2004 , 228, 45-54	9.6	102
179	Carbon molecular sieve gas separation membranes based on poly(vinylidene chloride-co-vinyl chloride). <i>Carbon</i> , 2000 , 38, 1067-1073	10.4	100
178	Adsorption of volatile organic compounds by means of activated carbon fibre-based monoliths. <i>Carbon</i> , 2003 , 41, 87-96	10.4	99
177	Mesoporous carbons synthesized by direct carbonization of citrate salts for use as high-performance capacitors. <i>Carbon</i> , 2015 , 88, 239-251	10.4	98
176	Low-temperature SCR of NOx with NH3 over activated carbon fiber composite-supported metal oxides. <i>Applied Catalysis B: Environmental</i> , 2003 , 41, 323-338	21.8	98
175	Synthetic Route to Nanocomposites Made Up of Inorganic Nanoparticles Confined within a Hollow Mesoporous Carbon Shell. <i>Chemistry of Materials</i> , 2007 , 19, 5418-5423	9.6	94
174	Electrochemical capacitor performance of mesoporous carbons obtained by templating technique. <i>Carbon</i> , 2005 , 43, 866-870	10.4	94
173	Optimization of the Pore Structure of Biomass-Based Carbons in Relation to Their Use for CO Capture under Low- and High-Pressure Regimes. <i>ACS Applied Materials & District Amplication (Capture Under Low- and High-Pressure Regimes)</i> .	-1633	93
172	Manganese ferrite nanoparticles synthesized through a nanocasting route as a highly active Fenton catalyst. <i>Catalysis Communications</i> , 2007 , 8, 2037-2042	3.2	91

(2006-2000)

171	Low temperature selective catalytic reduction of NO over modified activated carbon fibres. <i>Applied Catalysis B: Environmental</i> , 2000 , 27, 27-36	21.8	91
170	Aging of carbon membranes under different environments. <i>Carbon</i> , 2001 , 39, 733-740	10.4	87
169	High-surface area carbons from renewable sources with a bimodal micro-mesoporosity for high-performance ionic liquid-based supercapacitors. <i>Carbon</i> , 2015 , 94, 41-52	10.4	86
168	Separation of hydrocarbon gas mixtures using phenolic resin-based carbon membranes. <i>Separation and Purification Technology</i> , 2002 , 28, 29-41	8.3	85
167	Preparation and hydrogen storage capacity of highly porous activated carbon materials derived from polythiophene. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 15658-15663	6.7	84
166	Polypyrrole-derived mesoporous nitrogen-doped carbons with intrinsic catalytic activity in the oxygen reduction reaction. <i>RSC Advances</i> , 2013 , 3, 9904	3.7	82
165	Synthesis of Uniform Mesoporous Carbon Capsules by Carbonization of Organosilica Nanospheres. <i>Chemistry of Materials</i> , 2010 , 22, 2526-2533	9.6	82
164	One-step synthesis of ultra-high surface area nanoporous carbons and their application for electrochemical energy storage. <i>Carbon</i> , 2018 , 131, 193-200	10.4	81
163	A Facile Route for the Preparation of Superparamagnetic Porous Carbons. <i>Chemistry of Materials</i> , 2006 , 18, 1675-1679	9.6	81
162	Carbon molecular sieve membranes from polyetherimide. <i>Microporous and Mesoporous Materials</i> , 1998 , 26, 23-26	5.3	80
161	Low-temperature SCR of NOx with NH3 over carbon-ceramic supported catalysts. <i>Applied Catalysis B: Environmental</i> , 2003 , 46, 261-271	21.8	80
160	Adsorption-selective carbon membrane for gas separation. <i>Journal of Membrane Science</i> , 2000 , 177, 9-1	6 9.6	80
159	Sustainable supercapacitor electrodes produced by the activation of biomass with sodium thiosulfate. <i>Energy Storage Materials</i> , 2019 , 18, 356-365	19.4	75
158	Direct synthesis of graphitic carbon nanostructures from saccharides and their use as electrocatalytic supports. <i>Carbon</i> , 2008 , 46, 931-939	10.4	75
157	Carbon molecular sieve membranes derived from a phenolic resin supported on porous ceramic tubes. <i>Separation and Purification Technology</i> , 2001 , 25, 379-384	8.3	75
156	Interplay between microstructure and magnetism in NiO nanoparticles: breakdown of the antiferromagnetic order. <i>Nanoscale</i> , 2014 , 6, 457-65	7.7	72
155	Highly dispersed platinum nanoparticles on carbon nanocoils and their electrocatalytic performance for fuel cell reactions. <i>Electrochimica Acta</i> , 2009 , 54, 2234-2238	6.7	72
154	Nanosized catalysts for the production of hydrogen by methanol steam reforming. <i>Catalysis Today</i> , 2006 , 116, 354-360	5.3	70

153	One-Pot Synthesis of Biomass-Based Hierarchical Porous Carbons with a Large Porosity Development. <i>Chemistry of Materials</i> , 2017 , 29, 6900-6907	9.6	68
152	Synthesis of carbon-based solid acid microspheres and their application to the production of biodiesel. <i>ChemSusChem</i> , 2010 , 3, 1352-4	8.3	68
151	Template synthesis of mesoporous carbons with tailorable pore size and porosity. <i>Carbon</i> , 2004 , 42, 433	3 -43. 6	68
150	Sulfonated mesoporous silicalarbon composites and their use as solid acid catalysts. <i>Applied Surface Science</i> , 2012 , 261, 574-583	6.7	66
149	Preparation, Characterization, and Enzyme Immobilization Capacities of Superparamagnetic Silica/Iron Oxide Nanocomposites with Mesostructured Porosity. <i>Chemistry of Materials</i> , 2009 , 21, 1806	- 18 14	66
148	Encapsulation of nanosized catalysts in the hollow core of a mesoporous carbon capsule. <i>Journal of Catalysis</i> , 2007 , 251, 239-243	7.3	66
147	Treatments to enhance the SO2 capture by activated carbon fibres. <i>Applied Catalysis B: Environmental</i> , 1998 , 18, 171-179	21.8	65
146	One-pot synthesis of microporous carbons highly enriched in nitrogen and their electrochemical performance. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 14439-14448	13	63
145	Saccharide-based graphitic carbon nanocoils as supports for PtRu nanoparticles for methanol electrooxidation. <i>Journal of Power Sources</i> , 2007 , 171, 546-551	8.9	62
144	Monodisperse carbon-polymer mesoporous spheres with magnetic functionality and adjustable pore-size distribution. <i>Small</i> , 2007 , 3, 275-9	11	61
143	Highly porous S-doped carbons. <i>Microporous and Mesoporous Materials</i> , 2012 , 158, 318-323	5.3	60
142	Low temperature selective catalytic reduction of NO over polyarylamide-based carbon fibres. <i>Applied Catalysis B: Environmental</i> , 1999 , 23, 25-35	21.8	60
141	Fabrication of Monodisperse Mesoporous Carbon Capsules Decorated with Ferrite Nanoparticles. Journal of Physical Chemistry C, 2008 , 112, 3648-3654	3.8	59
140	Preparation of Nanosized Perovskites and Spinels through a Silica Xerogel Template Route. <i>Chemistry of Materials</i> , 2005 , 17, 1919-1922	9.6	59
139	Effect of air oxidation on gas separation properties of adsorption-selective carbon membranes. <i>Carbon</i> , 2001 , 39, 697-706	10.4	59
138	N-doped microporous carbon microspheres for high volumetric performance supercapacitors. <i>Electrochimica Acta</i> , 2015 , 168, 320-329	6.7	58
137	Enhanced high rate performance of LiMn2O4 spinel nanoparticles synthesized by a hard-template route. <i>Journal of Power Sources</i> , 2007 , 166, 492-498	8.9	58
136	Mesoporous carbon capsules as electrode materials in electrochemical double layer capacitors. Physical Chemistry Chemical Physics, 2011, 13, 2652-5	3.6	57

(2010-2008)

135	Solid-phase synthesis of graphitic carbon nanostructures from iron and cobalt gluconates and their utilization as electrocatalyst supports. <i>Physical Chemistry Chemical Physics</i> , 2008 , 10, 1433-42	3.6	57	
134	Highly active structured catalyst made up of mesoporous Co3O4 nanowires supported on a metal wire mesh for the preferential oxidation of CO. <i>International Journal of Hydrogen Energy</i> , 2008 , 33, 668	7-6695	57	
133	Porous structure of polyarylamide-based activated carbon fibres. <i>Carbon</i> , 1996 , 34, 1201-1206	10.4	57	
132	Preparation of supported carbon molecular sieve membranes. <i>Carbon</i> , 1999 , 37, 679-684	10.4	56	
131	Superior capacitive performance of hydrochar-based porous carbons in aqueous electrolytes. <i>ChemSusChem</i> , 2015 , 8, 1049-57	8.3	54	
130	Preparation of microporous carbonDeramic cellular monoliths. <i>Microporous and Mesoporous Materials</i> , 2001 , 43, 113-126	5.3	51	
129	Synthesis of magnetically separable adsorbents through the incorporation of protected nickel nanoparticles in an activated carbon. <i>Carbon</i> , 2006 , 44, 1954-1957	10.4	50	
128	Influence of coal oxidation upon char gasification reactivity. <i>Fuel</i> , 1995 , 74, 729-735	7.1	50	
127	Boosting High-Performance in Lithium-Sulfur Batteries via Dilute Electrolyte. <i>Nano Letters</i> , 2020 , 20, 5391-5399	11.5	49	
126	Synthesis of Highly Uniform Mesoporous Sub-Micrometric Capsules of Silicon Oxycarbide and Silica. <i>Chemistry of Materials</i> , 2007 , 19, 3096-3098	9.6	49	
125	Highly Porous Renewable Carbons for Enhanced Storage of Energy-Related Gases (H2 and CO2) at High Pressures. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 4710-4716	8.3	48	
124	SURFACE AREA AND PORE SIZE CHANGES DURING SINTERING OF CALCIUM OXIDE PARTICLES. <i>Chemical Engineering Communications</i> , 1991 , 109, 73-88	2.2	48	
123	Attrition of coal ash particles in a fluidized bed. <i>Powder Technology</i> , 1991 , 66, 41-46	5.2	48	
122	Adsorption and breakthrough performance of carbon-coated ceramic monoliths at low concentration of n-butane. <i>Chemical Engineering Science</i> , 2004 , 59, 2791-2800	4.4	47	
121	A sustainable approach to hierarchically porous carbons from tannic acid and their utilization in supercapacitive energy storage systems. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 14280-14290	13	46	
120	Meso/Macroporous Carbon Monoliths from Polymeric Foams. <i>Advanced Engineering Materials</i> , 2004 , 6, 897-899	3.5	46	
119	Graphene-cellulose tissue composites for high power supercapacitors. <i>Energy Storage Materials</i> , 2016 , 5, 33-42	19.4	45	
118	Synthesis of colloidal silica nanoparticles of a tunable mesopore size and their application to the adsorption of biomolecules. <i>Journal of Colloid and Interface Science</i> , 2010 , 349, 173-80	9.3	44	

117	Synthesis of macro/mesoporous silica and carbon monoliths by using a commercial polyurethane foam as sacrificial template. <i>Materials Letters</i> , 2007 , 61, 2378-2381	3.3	44
116	Potentiometric determination of sulphur in solid samples with a sulphide selective electrode. <i>Analytica Chimica Acta</i> , 1999 , 380, 39-45	6.6	43
115	Template synthesis of mesoporous carbons from mesostructured silica by vapor deposition polymerisation. <i>Journal of Materials Chemistry</i> , 2003 , 13, 1843		42
114	On the electrical double-layer capacitance of mesoporous templated carbons. <i>Carbon</i> , 2005 , 43, 3012-	30:15.4	42
113	A Green Route to High-Surface Area Carbons by Chemical Activation of Biomass-Based Products with Sodium Thiosulfate. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 16323-16331	8.3	42
112	Low-temperature SCR of NOx with NH3 over NomexIrejects-based activated carbon fibre composite-supported manganese oxides. <i>Applied Catalysis B: Environmental</i> , 2001 , 34, 43-53	21.8	41
111	Low-Cost Synthetic Route to Mesoporous Carbons with Narrow Pore Size Distributions and Tunable Porosity through Silica Xerogel Templates. <i>Chemistry of Materials</i> , 2004 , 16, 449-455	9.6	40
110	Easy synthesis of graphitic carbon nanocoils from saccharides. <i>Materials Chemistry and Physics</i> , 2009 , 113, 208-214	4.4	39
109	Low-temperature SCR of NOx with NH3 over NomexIrejects-based activated carbon fibre composite-supported manganese oxides. <i>Applied Catalysis B: Environmental</i> , 2001 , 34, 55-71	21.8	38
108	More Sustainable Chemical Activation Strategies for the Production of Porous Carbons. <i>ChemSusChem</i> , 2021 , 14, 94-117	8.3	38
107	Synthesis and characterisation of mesoporous carbons of large textural porosity and tunable pore size by templating mesostructured HMS silica materials. <i>Microporous and Mesoporous Materials</i> , 2004 , 74, 49-58	5.3	36
106	Free-standing hybrid films based on graphene and porous carbon particles for flexible supercapacitors. <i>Sustainable Energy and Fuels</i> , 2017 , 1, 127-137	5.8	35
105	Scrutinizing the role of size reduction on the exchange bias and dynamic magnetic behavior in NiO nanoparticles. <i>Nanotechnology</i> , 2015 , 26, 305705	3.4	35
104	Low-temperature SCR of NO with NH3 over carbonderamic cellular monolith-supported manganese oxides. <i>Catalysis Today</i> , 2001 , 69, 259-264	5.3	35
103	Size effects on the NBl temperature of antiferromagnetic NiO nanoparticles. <i>AIP Advances</i> , 2016 , 6, 056104	1.5	35
102	Microstructure and magnetism of nanoparticles with IFe core surrounded by IFe and iron oxide shells. <i>Physical Review B</i> , 2010 , 81,	3.3	34
101	Mesostructured silicalarbon composites synthesized by employing surfactants as carbon source. <i>Microporous and Mesoporous Materials</i> , 2010 , 134, 165-174	5.3	34
100	Mechanism of low temperature selective catalytic reduction of NO with NH3 over carbon-supported Mn3O4. <i>Physical Chemistry Chemical Physics</i> , 2004 , 6, 453-464	3.6	34

(2019-1994)

99	Study of the direct sulfation of limestone particles at high CO2 partial pressures. <i>Fuel Processing Technology</i> , 1994 , 38, 181-192	7.2	34
98	A general and low-cost synthetic route to high-surface area metal oxides through a silica xerogel template. <i>Journal of Physics and Chemistry of Solids</i> , 2005 , 66, 741-747	3.9	33
97	Enhanced Protection of Carbon-Encapsulated Magnetic Nickel Nanoparticles through a Sucrose-Based Synthetic Strategy. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 5294-5300	3.8	32
96	Co-adsorption of n-butane/water vapour mixtures on activated carbon fibre-based monoliths. <i>Carbon</i> , 2004 , 42, 71-81	10.4	32
95	Magnetically separable bimodal mesoporous carbons with a large capacity for the immobilization of biomolecules. <i>Carbon</i> , 2009 , 47, 2519-2527	10.4	31
94	Cyanide and Phenol Oxidation on Nanostructured Co[sub 3]O[sub 4] Electrodes Prepared by Different Methods. <i>Journal of the Electrochemical Society</i> , 2008 , 155, K110	3.9	31
93	Kinetics of the Low-Temperature Selective Catalytic Reduction of NO with NH3 Over Activated Carbon Fiber Composite-Supported Iron Oxides. <i>Catalysis Letters</i> , 2002 , 84, 13-19	2.8	31
92	Preparation of active carbons from coal Part I. Oxidation of coal. <i>Fuel Processing Technology</i> , 1996 , 47, 119-138	7.2	30
91	Influence of coal oxidation on the structure of char. <i>Fuel</i> , 1994 , 73, 1358-1364	7.1	30
90	Signatures of clustering in superparamagnetic colloidal nanocomposites of an inorganic and hybrid nature. <i>Small</i> , 2008 , 4, 254-61	11	29
89	Kinetics and Mechanism of Low-Temperature SCR of NOx with NH3 over Vanadium Oxide Supported on Carbon Teramic Cellular Monoliths. <i>Industrial & Camp; Engineering Chemistry Research</i> , 2004 , 43, 2349-2355	3.9	29
88	Preparation and Characterization of Adsorption-Selective Carbon Membranes for Gas Separation. <i>Adsorption</i> , 2001 , 7, 117-129	2.6	29
87	Aqueous Dispersions of Graphene from Electrochemically Exfoliated Graphite. <i>Chemistry - A European Journal</i> , 2016 , 22, 17351-17358	4.8	28
86	Kinetics of oxidation of CaS particles in the regime of low SO2 release. <i>Chemical Engineering Science</i> , 1999 , 54, 77-90	4.4	28
85	Anatase TiO2 Confined in Carbon Nanopores for High-Energy Li-Ion Hybrid Supercapacitors Operating at High Rates and Subzero Temperatures. <i>Advanced Energy Materials</i> , 2020 , 10, 1902993	21.8	28
84	Carboxyl-functionalized mesoporous silicalarbon composites as highly efficient adsorbents in liquid phase. <i>Microporous and Mesoporous Materials</i> , 2013 , 176, 78-85	5.3	27
83	Facile synthetic route to nanosized ferrites by using mesoporous silica as a hard template. <i>Nanotechnology</i> , 2007 , 18, 145603	3.4	27
82	Boosting the Oxygen Reduction Electrocatalytic Performance of Nonprecious Metal Nanocarbons via Triple Boundary Engineering Using Protic Ionic Liquids. <i>ACS Applied Materials & Discrete Samp; Interfaces</i> , 2019 , 11, 11298-11305	9.5	26

81	Defining a performance map of porous carbon sorbents for high-pressure carbon dioxide uptake and carbon dioxidethethane selectivity. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 14739-14751	13	25
80	Functionalization of mesostructured silicalarbon composites. <i>Materials Chemistry and Physics</i> , 2013 , 139, 281-289	4.4	24
79	Analysis of the direct sulfation of calcium carbonate. <i>Thermochimica Acta</i> , 1994 , 242, 161-172	2.9	24
78	Influence of percolation on the modification of overall particle properties during gasification of porous solids. <i>Chemical Engineering Science</i> , 1997 , 52, 1-11	4.4	23
77	Sulphur retention by ash during fluidized bed combustion of bituminous coals. <i>Fuel</i> , 1992 , 71, 507-511	7.1	23
76	Sustainable Salt Template-Assisted Chemical Activation for the Production of Porous Carbons with Enhanced Power Handling Ability in Supercapacitors. <i>Batteries and Supercaps</i> , 2019 , 2, 701-711	5.6	22
75	Iron/Nitrogen co-doped mesoporous carbon synthesized by an endo-templating approach as an efficient electrocatalyst for the oxygen reduction reaction. <i>Microporous and Mesoporous Materials</i> , 2019 , 278, 280-288	5.3	22
74	Templated Synthesis of Mesoporous Superparamagnetic Polymers. <i>Advanced Functional Materials</i> , 2007 , 17, 2321-2327	15.6	21
73	Dry formation of low-density NomexIrejects-based activated carbon fiber composites. <i>Carbon</i> , 2000 , 38, 2167-2170	10.4	21
72	Unravelling the onset of the exchange bias effect in Ni(core)@NiO(shell) nanoparticles embedded in a mesoporous carbon matrix. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 5674-5682	7.1	20
71	Fabrication of mesoporous SiO(2)-C-Fe(3)O(4)/gamma-Fe(2)O(3) and SiO(2)-C-Fe magnetic composites. <i>Journal of Colloid and Interface Science</i> , 2009 , 340, 230-6	9.3	20
70	Nickel nanoparticles deposited into an activated porous carbon: synthesis, microstructure and magnetic properties. <i>Physica Status Solidi - Rapid Research Letters</i> , 2009 , 3, 4-6	2.5	20
69	Control of the structural properties of mesoporous polymers synthesized using porous silica materials as templates. <i>Microporous and Mesoporous Materials</i> , 2008 , 112, 319-326	5.3	20
68	Characterizing fuels for atmospheric fluidized bed combustion. <i>Combustion and Flame</i> , 1995 , 103, 41-58	³ 5.3	20
67	Analysis of major, minor and trace elements in coal by radioisotope X-ray fluorescence spectrometry. <i>Fuel</i> , 2001 , 80, 255-261	7.1	19
66	The effect of metallic salt additives on direct sulfation of calcium carbonate and on decomposition of sulfated samples. <i>Thermochimica Acta</i> , 1996 , 276, 257-269	2.9	19
65	Synthesis strategies of templated porous carbons beyond the silica nanocasting technique. <i>Carbon</i> , 2021 , 178, 451-476	10.4	19
64	Sulfation of dolomite particles at high CO2 partial pressures. <i>Thermochimica Acta</i> , 1995 , 254, 63-78	2.9	18

63	Magnetically separable carbon capsules loaded with laccase and their application to dye degradation. <i>RSC Advances</i> , 2011 , 1, 1756	3.7	17
62	Co nanoparticles inserted into a porous carbon amorphous matrix: the role of cooling field and temperature on the exchange bias effect. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 927-32	3.6	17
61	Silicalite-1 membranes supported on porous carbon discs. <i>Microporous and Mesoporous Materials</i> , 2003 , 59, 147-159	5.3	17
60	Simulation of secondary fragmentation during fluidized bed combustion of char particles. <i>Powder Technology</i> , 1996 , 89, 71-78	5.2	17
59	Modelling gasification reactions including the percolation phenomenon. <i>Chemical Engineering Science</i> , 1994 , 49, 3813-3821	4.4	17
58	A simple and general approach for in situ synthesis of sulfurporous carbon composites for lithiumBulfur batteries. <i>Sustainable Energy and Fuels</i> , 2019 , 3, 3498-3509	5.8	17
57	A Simple Approach towards Highly Dense Solvated Graphene Films for Supercapacitors. <i>ChemNanoMat</i> , 2016 , 2, 33-36	3.5	16
56	Template synthesis of carbon nanotubules by vapor deposition polymerization. <i>Carbon</i> , 2002 , 40, 1600	-1607	16
55	Decomposition of CaS particles at ambient conditions. <i>Chemical Engineering Science</i> , 2000 , 55, 1661-16	74,4	16
54	Kinetics of oxidation of CaS particles in the regime of high SO2 release. <i>Chemical Engineering Science</i> , 1999 , 54, 495-506	4.4	16
53	Direct measurement of ignition temperatures of pulverized coal particles. Fuel, 1993 , 72, 1287-1291	7.1	16
52	Flexible, Free-Standing and Holey Graphene Paper for High-Power Supercapacitors. <i>ChemNanoMat</i> , 2016 , 2, 1055-1063	3.5	15
51	High Surface Area CuMn2O4 Prepared by Silica-Aquagel Confined co-precipitation. Characterization and Testing in Steam Reforming of Methanol (SRM). <i>Catalysis Letters</i> , 2007 , 118, 8-14	2.8	15
50	Changes in textural properties of limestone and dolomite during calcination. <i>Thermochimica Acta</i> , 1991 , 179, 125-134	2.9	15
49	Bridging exchange bias effect in NiO and Ni(core)@NiO(shell) nanoparticles. <i>Journal of Magnetism and Magnetic Materials</i> , 2016 , 400, 236-241	2.8	14
48	Effects of Clay Minerals on Char Texture and Combustion. <i>Energy & Energy &</i>	4.1	14
47	Sulphur retention by limestone particles under PFBC conditions. <i>Fuel Processing Technology</i> , 1993 , 36, 65-71	7.2	14
46	Commentary: Methods of calculating the volumetric performance of a supercapacitor. <i>Energy Storage Materials</i> , 2016 , 4, 154-155	19.4	14

45	N/S-Co-doped Porous Carbon Nanoparticles Serving the Dual Function of Sulfur Host and Separator Coating in LithiumBulfur Batteries. <i>ACS Applied Energy Materials</i> , 2020 , 3, 3397-3407	6.1	13
44	Exchange-bias and superparamagnetic behaviour of Fe nanoparticles embedded in a porous carbon matrix. <i>Journal of Non-Crystalline Solids</i> , 2008 , 354, 5219-5221	3.9	13
43	Straightforward synthesis of Sulfur/N,S-codoped carbon cathodes for Lithium-Sulfur batteries. <i>Scientific Reports</i> , 2020 , 10, 4866	4.9	12
42	Modelling the gasification of carbon fibres. <i>Carbon</i> , 1996 , 34, 223-230	10.4	12
41	Active carbons from semianthracites. <i>Applied Catalysis A: General</i> , 1993 , 98, 115-123	5.1	12
40	Pore Characteristics for Efficient CO Storage in Hydrated Carbons. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 ,	9.5	11
39	Silica@Carbon mesoporous nanorattle structures synthesised by means of a selective etching strategy. <i>Materials Letters</i> , 2010 , 64, 1587-1590	3.3	11
38	Importance of micropore size distribution on adsorption at low adsorbate concentrations. <i>Carbon</i> , 2003 , 41, 843-846	10.4	11
37	Synthesis of mesostructured silica with tailorable textural porosity and particle size. <i>Materials Letters</i> , 2004 , 58, 1494-1497	3.3	11
36	Modeling the breakthrough behavior of an activated carbon fiber monolith in . <i>Chemical Engineering Science</i> , 2006 , 61, 4762-4772	4.4	10
35	Production of a nitrogenous humic fertilizer by the oxidation-ammoniation of lignite. <i>Industrial & Engineering Chemistry Product Research and Development</i> , 1984 , 23, 620-624		10
34	Control of crystalline phases in magnetic Fe nanoparticles inserted inside a matrix of porous carbon. <i>Journal of Magnetism and Magnetic Materials</i> , 2010 , 322, 1300-1303	2.8	9
33	Modification of textural properties of Spanish coal-derived chars by activation with carbon dioxide. <i>Fuel Processing Technology</i> , 1990 , 24, 305-310	7.2	9
32	Disentangling magnetic core/shell morphologies in Co-based nanoparticles. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 2302-2311	7.1	9
31	Templated synthesis of high surface area inorganic oxides by silica aquagel-confined co-precipitation. <i>Microporous and Mesoporous Materials</i> , 2008 , 112, 291-298	5.3	8
30	Microporous structure of chars produced by pyrolysis of preoxidized coals. <i>Journal of Analytical and Applied Pyrolysis</i> , 1995 , 34, 13-28	6	8
29	IronNitrogen-Doped Dendritic Carbon Nanostructures for an Efficient Oxygen Reduction Reaction. <i>ACS Applied Energy Materials</i> , 2018 , 1, 6560-6568	6.1	8
28	Onion-like nanoparticles with Fe core surrounded by a Fe/Fe-oxide double shell. <i>Journal of Alloys and Compounds</i> , 2011 , 509, S320-S322	5.7	7

27	Templated synthesis of nanosized mesoporous carbons. <i>Materials Research Bulletin</i> , 2008 , 43, 1898-190	045.1	7
26	Prediction of attrition in a continuous fluid-bed system. <i>Powder Technology</i> , 1991 , 67, 291-293	5.2	7
25	Oxi-ammoniation of pine-bark particles. Canadian Journal of Chemical Engineering, 1985, 63, 835-839	2.3	7
24	Highly Packed Monodisperse Porous Carbon Microspheres for Energy Storage in Supercapacitors and LiB Batteries. <i>ChemElectroChem</i> , 2020 , 7, 3798-3810	4.3	7
23	CO2 Storage on Nanoporous Carbons. <i>Green Energy and Technology</i> , 2019 , 287-330	0.6	6
22	Encapsulation of Polypyrrole Chains Inside the Framework of an Ordered Mesoporous Carbon. <i>Macromolecular Rapid Communications</i> , 2005 , 26, 1055-1059	4.8	6
21	SO2 Retention over polyarylamide-based activated carbon fibers. <i>Environmental Progress</i> , 2000 , 19, 246	5-254	6
20	Stability and oxidative stabilisation of sulphided calcareous sorbents from entrained flow gasifiers. <i>Chemical Engineering Science</i> , 2000 , 55, 3697-3714	4.4	6
19	Combustion kinetics of coke particles in a fluidized bed reactor. <i>Fuel Processing Technology</i> , 1994 , 38, 193-210	7.2	6
18	Adsorption isotherms of several hydrocarbons on Ellumina by gas chromatography. <i>Reaction Kinetics and Catalysis Letters</i> , 1986 , 31, 173-179		6
17	Calculation of Burnoff Distributions of Char Particles in a Bubbling Fluidized Bed Reactor by Means of Batch Combustion Experiments. <i>Chemical Engineering Research and Design</i> , 1998 , 76, 864-872	5.5	5
16	Variation of the textural properties of a coke during gasification. <i>Vacuum</i> , 1989 , 39, 677-681	3.7	5
15	Disclosure of Double Exchange Bias Effect in Chromium (III) Oxide Nanoparticles. <i>IEEE Transactions on Magnetics</i> , 2017 , 53, 1-4	2	4
14	Applications of Hydrothermal Carbon in Modern Nanotechnology 2013 , 213-294		3
13	A SIMPLE METHOD FOR STUDYING THE KINETICS OF GAS-SOLID REACTIONS IN A FLUIDIZED BED REACTOR. <i>Chemical Engineering Communications</i> , 1994 , 130, 241-250	2.2	3
12	On the exchange bias effect in NiO nanoparticles with a core(antiferromagnetic)/shell (spin glass) morphology. <i>Journal of Physics: Conference Series</i> , 2015 , 663, 012001	0.3	2
11	Facile synthesis of graphitic carbons decorated with SnO2 nanoparticles and their application as high capacity lithium-ion battery anodes. <i>Journal of Applied Electrochemistry</i> , 2012 , 42, 901-908	2.6	2
10	Influence of separation temperature on the performance of adsorption-selective carbon membranes. <i>Carbon</i> , 2003 , 41, 2016-2019	10.4	2

9	Influence of coal preoxidation on textural properties of chars. <i>Studies in Surface Science and Catalysis</i> , 1994 , 651-659	1.8	2
8	Prediction of combustion efficiency in a fluidized bed combustor by statistical experimental design. <i>Fuel</i> , 1991 , 70, 861-864	7.1	2
7	Kinetic study of the reaction of a metallurgical coke with CO2. Solid State Ionics, 1990, 38, 75-80	3.3	2
6	Activated Carbon from Bituminous Coal. Studies in Surface Science and Catalysis, 1991, 63, 439-448	1.8	2
5	Cellulose as a Precursor of High-Performance Energy Storage Materials in Liß Batteries and Supercapacitors. <i>Energy Technology</i> , 2021 , 9, 2100268	3.5	2
4	Laboratory testing of different SO2 sorbents for dry sorbent injection. <i>Coal Science and Technology</i> , 1995 , 24, 1851-1854		1
3	Entangled core/shell magnetic structure driven by surface magnetic symmetry-breaking in Cr2O3 nanoparticles. <i>Journal of Materials Chemistry C</i> , 2022 , 10, 1798-1807	7.1	1
2	Dense (non-hollow) carbon nanospheres: synthesis and electrochemical energy applications. <i>Materials Today Nano</i> , 2021 , 16, 100147	9.7	1
1	Preparation and Characterization of Mesoporous Hybrid Particle-Fiber Carbon Monoliths. <i>Advanced Engineering Materials</i> , 2002 , 4, 291-294	3.5	