Antonio Benito Fuertes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5234560/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The production of carbon materials by hydrothermal carbonization of cellulose. Carbon, 2009, 47, 2281-2289.	5.4	1,550
2	Chemical and Structural Properties of Carbonaceous Products Obtained by Hydrothermal Carbonization of Saccharides. Chemistry - A European Journal, 2009, 15, 4195-4203.	1.7	1,193
3	Sustainable porous carbons with a superior performance for CO2 capture. Energy and Environmental Science, 2011, 4, 1765.	15.6	892
4	Nâ€Ðoped Polypyrroleâ€Based Porous Carbons for CO ₂ Capture. Advanced Functional Materials, 2011, 21, 2781-2787.	7.8	840
5	Direct Synthesis of Highly Porous Interconnected Carbon Nanosheets and Their Application as High-Performance Supercapacitors. ACS Nano, 2014, 8, 5069-5078.	7.3	654
6	Hydrothermal Carbonization of Abundant Renewable Natural Organic Chemicals for Highâ€Performance Supercapacitor Electrodes. Advanced Energy Materials, 2011, 1, 356-361.	10.2	538
7	Catalytic graphitization of templated mesoporous carbons. Carbon, 2006, 44, 468-474.	5.4	422
8	High density hydrogen storage in superactivated carbons from hydrothermally carbonized renewable organic materials. Energy and Environmental Science, 2011, 4, 1400.	15.6	411
9	Fe–N-Doped Carbon Capsules with Outstanding Electrochemical Performance and Stability for the Oxygen Reduction Reaction in Both Acid and Alkaline Conditions. ACS Nano, 2016, 10, 5922-5932.	7.3	403
10	Templated mesoporous carbons for supercapacitor application. Electrochimica Acta, 2005, 50, 2799-2805.	2.6	399
11	Polypyrroleâ€Derived Activated Carbons for Highâ€Performance Electrical Doubleâ€Layer Capacitors with Ionic Liquid Electrolyte. Advanced Functional Materials, 2012, 22, 827-834.	7.8	396
12	Hydrothermal carbonization of biomass as a route for the sequestration of CO2: Chemical and structural properties of the carbonized products. Biomass and Bioenergy, 2011, 35, 3152-3159.	2.9	341
13	Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover. Soil Research, 2010, 48, 618.	0.6	332
14	Assessment of the Role of Micropore Size and N-Doping in CO ₂ Capture by Porous Carbons. ACS Applied Materials & Interfaces, 2013, 5, 6360-6368.	4.0	324
15	Sulfur-containing activated carbons with greatly reduced content of bottle neck pores for double-layer capacitors: a case study for pseudocapacitance detection. Energy and Environmental Science, 2013, 6, 2465.	15.6	309
16	Influence of pore structure on electric double-layer capacitance of template mesoporous carbons. Journal of Power Sources, 2004, 133, 329-336.	4.0	275
17	High-performance CO2 sorbents from algae. RSC Advances, 2012, 2, 12792.	1.7	227
18	Hierarchical Microporous/Mesoporous Carbon Nanosheets for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2015, 7, 4344-4353.	4.0	220

#	Article	IF	CITATIONS
19	Supported carbon molecular sieve membranes based on a phenolic resin. Journal of Membrane Science, 1999, 160, 201-211.	4.1	216
20	N-doped porous carbon capsules with tunable porosity for high-performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 2914-2923.	5.2	214
21	One-step synthesis of silica@resorcinol–formaldehyde spheres and their application for the fabrication of polymer and carbon capsules. Chemical Communications, 2012, 48, 6124.	2.2	203
22	Beyond KOH activation for the synthesis of superactivated carbons from hydrochar. Carbon, 2017, 114, 50-58.	5.4	203
23	The influence of pore size distribution on the oxygen reduction reaction performance in nitrogen doped carbon microspheres. Journal of Materials Chemistry A, 2016, 4, 2581-2589.	5.2	195
24	CO2 adsorption by activated templated carbons. Journal of Colloid and Interface Science, 2012, 366, 147-154.	5.0	194
25	Efficient metal-free N-doped mesoporous carbon catalysts for ORR by a template-free approach. Carbon, 2016, 106, 179-187.	5.4	185
26	Highly active and selective CuOx/CeO2 catalyst prepared by a single-step citrate method for preferential oxidation of carbon monoxide. Applied Catalysis B: Environmental, 2005, 57, 43-53.	10.8	178
27	Graphitic mesoporous carbons synthesised through mesostructured silica templates. Carbon, 2004, 42, 3049-3055.	5.4	174
28	A Green Approach to Highâ€Performance Supercapacitor Electrodes: The Chemical Activation of Hydrochar with Potassium Bicarbonate. ChemSusChem, 2016, 9, 1880-1888.	3.6	173
29	Hydrothermal synthesis of microalgae-derived microporous carbons for electrochemical capacitors. Journal of Power Sources, 2014, 267, 26-32.	4.0	158
30	Ultrahigh surface area polypyrrole-based carbons with superior performance for hydrogen storage. Energy and Environmental Science, 2011, 4, 2930.	15.6	155
31	Mechanism of low-temperature selective catalytic reduction of NO withBNH3 over carbon-supported Mn3O4Role of surface NH3 species: SCR mechanism. Journal of Catalysis, 2004, 226, 138-155.	3.1	148
32	Carbon composite membranes from Matrimid® and Kapton® polyimides for gas separation. Microporous and Mesoporous Materials, 1999, 33, 115-125.	2.2	147
33	Mesoporous carbons with graphitic structures fabricated by using porous silica materials as templates and iron-impregnated polypyrrole as precursor. Journal of Materials Chemistry, 2005, 15, 1079.	6.7	147
34	Synthesis of Graphitic Carbon Nanostructures from Sawdust and Their Application as Electrocatalyst Supports. Journal of Physical Chemistry C, 2007, 111, 9749-9756.	1.5	147
35	A general and facile synthesis strategy towards highly porous carbons: carbonization of organic salts. Journal of Materials Chemistry A, 2013, 1, 13738.	5.2	147
36	Synthesis of ordered nanoporous carbons of tunable mesopore size by templating SBA-15 silica materials. Microporous and Mesoporous Materials, 2004, 67, 273-281.	2.2	146

#	Article	IF	CITATIONS
37	Optimization of the Pore Structure of Biomass-Based Carbons in Relation to Their Use for CO ₂ Capture under Low- and High-Pressure Regimes. ACS Applied Materials & Interfaces, 2018, 10, 1623-1633.	4.0	146
38	Fabrication of porous carbon monoliths with a graphitic framework. Carbon, 2013, 56, 155-166.	5.4	141
39	More Sustainable Chemical Activation Strategies for the Production of Porous Carbons. ChemSusChem, 2021, 14, 94-117.	3.6	137
40	Graphitic carbon nanostructures from cellulose. Chemical Physics Letters, 2010, 490, 63-68.	1.2	136
41	From Soybean residue to advanced supercapacitors. Scientific Reports, 2015, 5, 16618.	1.6	134
42	Preparation of supported asymmetric carbon molecular sieve membranes. Journal of Membrane Science, 1998, 144, 105-111.	4.1	127
43	Control of mesoporous structure of carbons synthesised using a mesostructured silica as template. Microporous and Mesoporous Materials, 2003, 62, 177-190.	2.2	124
44	Effects of phenolic resin pyrolysis conditions on carbon membrane performance for gas separation. Journal of Membrane Science, 2004, 228, 45-54.	4.1	123
45	Template synthesis of mesoporous carbons with a controlled particle size. Journal of Materials Chemistry, 2003, 13, 3085.	6.7	119
46	One-step synthesis of ultra-high surface area nanoporous carbons and their application for electrochemical energy storage. Carbon, 2018, 131, 193-200.	5.4	119
47	Aging of carbon membranes under different environments. Carbon, 2001, 39, 733-740.	5.4	118
48	Sustainable supercapacitor electrodes produced by the activation of biomass with sodium thiosulfate. Energy Storage Materials, 2019, 18, 356-365.	9.5	118
49	Carbon molecular sieve gas separation membranes based on poly(vinylidene chloride-co-vinyl) Tj ETQq1 1 0.7843	14 rgBT /0	Dverlock 10 1 117
50	Performance of templated mesoporous carbons in supercapacitors. Electrochimica Acta, 2007, 52, 3207-3215.	2.6	116
51	Mesoporous carbons synthesized by direct carbonization of citrate salts for use as high-performance capacitors. Carbon, 2015, 88, 239-251.	5.4	113
52	One-Pot Synthesis of Biomass-Based Hierarchical Porous Carbons with a Large Porosity Development. Chemistry of Materials, 2017, 29, 6900-6907.	3.2	110
53	Low-temperature SCR of NOx with NH3 over activated carbon fiber composite-supported metal oxides. Applied Catalysis B: Environmental, 2003, 41, 323-338.	10.8	108
54	High-surface area inorganic compounds prepared by nanocasting techniques. Materials Research Bulletin, 2006, 41, 2187-2197.	2.7	105

#	Article	IF	CITATIONS
55	Adsorption of volatile organic compounds by means of activated carbon fibre-based monoliths. Carbon, 2003, 41, 87-96.	5.4	104
56	Preparation and hydrogen storage capacity of highly porous activated carbon materials derived from polythiophene. International Journal of Hydrogen Energy, 2011, 36, 15658-15663.	3.8	103
57	Separation of hydrocarbon gas mixtures using phenolic resin-based carbon membranes. Separation and Purification Technology, 2002, 28, 29-41.	3.9	102
58	Carbon molecular sieve membranes from polyetherimide. Microporous and Mesoporous Materials, 1998, 26, 23-26.	2.2	101
59	Low temperature selective catalytic reduction of NO over modified activated carbon fibres. Applied Catalysis B: Environmental, 2000, 27, 27-36.	10.8	100
60	High-surface area carbons from renewable sources with a bimodal micro-mesoporosity for high-performance ionic liquid-based supercapacitors. Carbon, 2015, 94, 41-52.	5.4	98
61	Manganese ferrite nanoparticles synthesized through a nanocasting route as a highly active Fenton catalyst. Catalysis Communications, 2007, 8, 2037-2042.	1.6	97
62	Synthetic Route to Nanocomposites Made Up of Inorganic Nanoparticles Confined within a Hollow Mesoporous Carbon Shell. Chemistry of Materials, 2007, 19, 5418-5423.	3.2	97
63	Adsorption-selective carbon membrane for gas separation. Journal of Membrane Science, 2000, 177, 9-16.	4.1	95
64	Electrochemical capacitor performance of mesoporous carbons obtained by templating technique. Carbon, 2005, 43, 866-870.	5.4	95
65	Low-temperature SCR of NOx with NH3 over carbon-ceramic supported catalysts. Applied Catalysis B: Environmental, 2003, 46, 261-271.	10.8	94
66	Boosting High-Performance in Lithium–Sulfur Batteries via Dilute Electrolyte. Nano Letters, 2020, 20, 5391-5399.	4.5	93
67	Interplay between microstructure and magnetism in NiO nanoparticles: breakdown of the antiferromagnetic order. Nanoscale, 2014, 6, 457-465.	2.8	90
68	Carbon molecular sieve membranes derived from a phenolic resin supported on porous ceramic tubes. Separation and Purification Technology, 2001, 25, 379-384.	3.9	89
69	A Facile Route for the Preparation of Superparamagnetic Porous Carbons. Chemistry of Materials, 2006, 18, 1675-1679.	3.2	88
70	Synthesis of Uniform Mesoporous Carbon Capsules by Carbonization of Organosilica Nanospheres. Chemistry of Materials, 2010, 22, 2526-2533.	3.2	84
71	Nanosized catalysts for the production of hydrogen by methanol steam reforming. Catalysis Today, 2006, 116, 354-360.	2.2	83
72	Direct synthesis of graphitic carbon nanostructures from saccharides and their use as electrocatalytic supports. Carbon, 2008, 46, 931-939.	5.4	83

#	Article	IF	CITATIONS
73	Polypyrrole-derived mesoporous nitrogen-doped carbons with intrinsic catalytic activity in the oxygen reduction reaction. RSC Advances, 2013, 3, 9904.	1.7	83
74	Highly dispersed platinum nanoparticles on carbon nanocoils and their electrocatalytic performance for fuel cell reactions. Electrochimica Acta, 2009, 54, 2234-2238.	2.6	78
75	A sustainable approach to hierarchically porous carbons from tannic acid and their utilization in supercapacitive energy storage systems. Journal of Materials Chemistry A, 2019, 7, 14280-14290.	5.2	77
76	Sulfonated mesoporous silica–carbon composites and their use as solid acid catalysts. Applied Surface Science, 2012, 261, 574-583.	3.1	76
77	Highly porous S-doped carbons. Microporous and Mesoporous Materials, 2012, 158, 318-323.	2.2	75
78	One-pot synthesis of microporous carbons highly enriched in nitrogen and their electrochemical performance. Journal of Materials Chemistry A, 2014, 2, 14439-14448.	5.2	74
79	Template synthesis of mesoporous carbons with tailorable pore size and porosity. Carbon, 2004, 42, 433-436.	5.4	72
80	Treatments to enhance the SO2 capture by activated carbon fibres. Applied Catalysis B: Environmental, 1998, 18, 171-179.	10.8	71
81	Effect of air oxidation on gas separation properties of adsorption-selective carbon membranes. Carbon, 2001, 39, 697-706.	5.4	71
82	Saccharide-based graphitic carbon nanocoils as supports for PtRu nanoparticles for methanol electrooxidation. Journal of Power Sources, 2007, 171, 546-551.	4.0	71
83	Synthesis of Carbonâ€based Solid Acid Microspheres and Their Application to the Production of Biodiesel. ChemSusChem, 2010, 3, 1352-1354.	3.6	71
84	Encapsulation of nanosized catalysts in the hollow core of a mesoporous carbon capsule. Journal of Catalysis, 2007, 251, 239-243.	3.1	70
85	Enhanced high rate performance of LiMn2O4 spinel nanoparticles synthesized by a hard-template route. Journal of Power Sources, 2007, 166, 492-498.	4.0	68
86	Solid-phase synthesis of graphitic carbon nanostructures from iron and cobalt gluconates and their utilization as electrocatalyst supports. Physical Chemistry Chemical Physics, 2008, 10, 1433.	1.3	67
87	Preparation, Characterization, and Enzyme Immobilization Capacities of Superparamagnetic Silica/Iron Oxide Nanocomposites with Mesostructured Porosity. Chemistry of Materials, 2009, 21, 1806-1814.	3.2	67
88	Low temperature selective catalytic reduction of NO over polyarylamide-based carbon fibres. Applied Catalysis B: Environmental, 1999, 23, 25-35.	10.8	66
89	N-doped microporous carbon microspheres for high volumetric performance supercapacitors. Electrochimica Acta, 2015, 168, 320-329.	2.6	66
90	Synthesis strategies of templated porous carbons beyond the silica nanocasting technique. Carbon, 2021, 178, 451-476.	5.4	66

#	Article	IF	CITATIONS
91	Preparation of supported carbon molecular sieve membranes. Carbon, 1999, 37, 679-684.	5.4	65
92	Monodisperse Carbon–Polymer Mesoporous Spheres with Magnetic Functionality and Adjustable Pore-Size Distribution. Small, 2007, 3, 275-279.	5.2	65
93	Superior Capacitive Performance of Hydrocharâ€Based Porous Carbons in Aqueous Electrolytes. ChemSusChem, 2015, 8, 1049-1057.	3.6	65
94	Highly Porous Renewable Carbons for Enhanced Storage of Energy-Related Gases (H ₂ and) Tj ETQqC) 0 0 rgBT 3.2	Overlock 10
95	Preparation of Nanosized Perovskites and Spinels through a Silica Xerogel Template Route. Chemistry of Materials, 2005, 17, 1919-1922.	3.2	62
96	Porous structure of polyarylamide-based activated carbon fibres. Carbon, 1996, 34, 1201-1206.	5.4	60
97	Highly active structured catalyst made up of mesoporous Co3O4 nanowires supported on a metal wire mesh for the preferential oxidation of CO. International Journal of Hydrogen Energy, 2008, 33, 6687-6695.	3.8	60
98	Fabrication of Monodisperse Mesoporous Carbon Capsules Decorated with Ferrite Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 3648-3654.	1.5	60
99	Mesoporous carbon capsules as electrode materials in electrochemical double layer capacitors. Physical Chemistry Chemical Physics, 2011, 13, 2652-2655.	1.3	59
100	Synthesis of magnetically separable adsorbents through the incorporation of protected nickel nanoparticles in an activated carbon. Carbon, 2006, 44, 1954-1957.	5.4	57
101	A Green Route to High-Surface Area Carbons by Chemical Activation of Biomass-Based Products with Sodium Thiosulfate. ACS Sustainable Chemistry and Engineering, 2018, 6, 16323-16331.	3.2	57
102	SURFACE AREA AND PORE SIZE CHANGES DURING SINTERING OF CALCIUM OXIDE PARTICLES. Chemical Engineering Communications, 1991, 109, 73-88.	1.5	54
103	Adsorption and breakthrough performance of carbon-coated ceramic monoliths at low concentration of n-butane. Chemical Engineering Science, 2004, 59, 2791-2800.	1.9	54
104	Influence of coal oxidation upon char gasification reactivity. Fuel, 1995, 74, 729-735.	3.4	53
105	Graphene-cellulose tissue composites for high power supercapacitors. Energy Storage Materials, 2016, 5, 33-42.	9.5	53
106	Attrition of coal ash particles in a fluidized bed. Powder Technology, 1991, 66, 41-46.	2.1	52
107	Preparation of microporous carbon–ceramic cellular monoliths. Microporous and Mesoporous Materials, 2001, 43, 113-126.	2.2	52
108	Potentiometric determination of sulphur in solid samples with a sulphide selective electrode. Analytica Chimica Acta, 1999, 380, 39-45.	2.6	51

#	Article	IF	CITATIONS
109	Synthesis of Highly Uniform Mesoporous Sub-Micrometric Capsules of Silicon Oxycarbide and Silica. Chemistry of Materials, 2007, 19, 3096-3098.	3.2	50
110	Template synthesis of mesoporous carbons from mesostructured silica by vapor deposition polymerisation. Journal of Materials Chemistry, 2003, 13, 1843.	6.7	49
111	Meso/Macroporous Carbon Monoliths from Polymeric Foams. Advanced Engineering Materials, 2004, 6, 897-899.	1.6	47
112	Low-temperature SCR of NOx with NH3 over Nomexâ,,¢ rejects-based activated carbon fibre composite-supported manganese oxides. Applied Catalysis B: Environmental, 2001, 34, 55-71.	10.8	46
113	Easy synthesis of graphitic carbon nanocoils from saccharides. Materials Chemistry and Physics, 2009, 113, 208-214.	2.0	46
114	Synthesis of colloidal silica nanoparticles of a tunable mesopore size and their application to the adsorption of biomolecules. Journal of Colloid and Interface Science, 2010, 349, 173-180.	5.0	46
115	On the electrical double-layer capacitance of mesoporous templated carbons. Carbon, 2005, 43, 3012-3015.	5.4	45
116	Low-temperature SCR of NOx with NH3 over Nomexâ,,¢ rejects-based activated carbon fibre composite-supported manganese oxides. Applied Catalysis B: Environmental, 2001, 34, 43-53.	10.8	44
117	Low-Cost Synthetic Route to Mesoporous Carbons with Narrow Pore Size Distributions and Tunable Porosity through Silica Xerogel Templates. Chemistry of Materials, 2004, 16, 449-455.	3.2	44
118	Synthesis of macro/mesoporous silica and carbon monoliths by using a commercial polyurethane foam as sacrificial template. Materials Letters, 2007, 61, 2378-2381.	1.3	44
119	Size effects on the Néel temperature of antiferromagnetic NiO nanoparticles. AIP Advances, 2016, 6, .	0.6	44
120	Scrutinizing the role of size reduction on the exchange bias and dynamic magnetic behavior in NiO nanoparticles. Nanotechnology, 2015, 26, 305705.	1.3	43
121	Low-temperature SCR of NO with NH3 over carbon–ceramic cellular monolith-supported manganese oxides. Catalysis Today, 2001, 69, 259-264.	2.2	41
122	Sustainable Salt Templateâ€Assisted Chemical Activation for the Production of Porous Carbons with Enhanced Power Handling Ability in Supercapacitors. Batteries and Supercaps, 2019, 2, 701-711.	2.4	41
123	Mechanism of low temperature selective catalytic reduction of NO with NH3over carbon-supported Mn3O4: Active phase and role of surface NO species. Physical Chemistry Chemical Physics, 2004, 6, 453-464.	1.3	40
124	Anatase TiO ₂ Confined in Carbon Nanopores for Highâ€Energy Liâ€Ion Hybrid Supercapacitors Operating at High Rates and Subzero Temperatures. Advanced Energy Materials, 2020, 10, 1902993.	10.2	39
125	Mesostructured silica–carbon composites synthesized by employing surfactants as carbon source. Microporous and Mesoporous Materials, 2010, 134, 165-174.	2.2	38
126	Synthesis and characterisation of mesoporous carbons of large textural porosity and tunable pore size by templating mesostructured HMS silica materials. Microporous and Mesoporous Materials, 2004, 74, 49-58.	2.2	37

#	Article	IF	CITATIONS
127	Aqueous Dispersions of Graphene from Electrochemically Exfoliated Graphite. Chemistry - A European Journal, 2016, 22, 17351-17358.	1.7	37
128	Free-standing hybrid films based on graphene and porous carbon particles for flexible supercapacitors. Sustainable Energy and Fuels, 2017, 1, 127-137.	2.5	37
129	Title is missing!. Catalysis Letters, 2002, 84, 13-19.	1.4	36
130	Study of the direct sulfation of limestone particles at high CO2 partial pressures. Fuel Processing Technology, 1994, 38, 181-192.	3.7	35
131	Influence of coal oxidation on the structure of char. Fuel, 1994, 73, 1358-1364.	3.4	34
132	Preparation of active carbons from coal Part I. Oxidation of coal. Fuel Processing Technology, 1996, 47, 119-138.	3.7	34
133	Co-adsorption of n-butane/water vapour mixtures on activated carbon fibre-based monoliths. Carbon, 2004, 42, 71-81. Microstructure and magnetism of nanoparticles with mml:math	5.4	34
134	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mi>l³</mml:mi><mml:mtext>-Fe</mml:mtext></mml:mrow> co surrounded by <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>re_{1.1}</td><td>34</td></mml:math></mml:math>	re _{1.1}	34
135	iron oxide shells. Physical Review B, 2010, 81, . Enhanced Protection of Carbon-Encapsulated Magnetic Nickel Nanoparticles through a Sucrose-Based Synthetic Strategy. Journal of Physical Chemistry C, 2011, 115, 5294-5300.	1.5	34
136	Boosting the Oxygen Reduction Electrocatalytic Performance of Nonprecious Metal Nanocarbons via Triple Boundary Engineering Using Protic Ionic Liquids. ACS Applied Materials & Interfaces, 2019, 11, 11298-11305.	4.0	34
137	Iron/Nitrogen co-doped mesoporous carbon synthesized by an endo-templating approach as an efficient electrocatalyst for the oxygen reduction reaction. Microporous and Mesoporous Materials, 2019, 278, 280-288.	2.2	34
138	Preparation and Characterization of Adsorption-Selective Carbon Membranes for Gas Separation. Adsorption, 2001, 7, 117-129.	1.4	33
139	A general and low-cost synthetic route to high-surface area metal oxides through a silica xerogel template. Journal of Physics and Chemistry of Solids, 2005, 66, 741-747.	1.9	33
140	Cyanide and Phenol Oxidation on Nanostructured Co[sub 3]O[sub 4] Electrodes Prepared by Different Methods. Journal of the Electrochemical Society, 2008, 155, K110.	1.3	33
141	Magnetically separable bimodal mesoporous carbons with a large capacity for the immobilization of biomolecules. Carbon, 2009, 47, 2519-2527.	5.4	33
142	Carboxyl-functionalized mesoporous silica–carbon composites as highly efficient adsorbents in liquid phase. Microporous and Mesoporous Materials, 2013, 176, 78-85.	2.2	33
143	Defining a performance map of porous carbon sorbents for high-pressure carbon dioxide uptake and carbon dioxide–methane selectivity. Journal of Materials Chemistry A, 2016, 4, 14739-14751.	5.2	33
144	Kinetics and Mechanism of Low-Temperature SCR of NOxwith NH3over Vanadium Oxide Supported on Carbonâ 'Ceramic Cellular Monoliths. Industrial & Engineering Chemistry Research, 2004, 43, 2349-2355.	1.8	32

#	Article	IF	CITATIONS
145	Kinetics of oxidation of CaS particles in the regime of low SO2 release. Chemical Engineering Science, 1999, 54, 77-90.	1.9	31
146	Facile synthetic route to nanosized ferrites by using mesoporous silica as a hard template. Nanotechnology, 2007, 18, 145603.	1.3	30
147	Signatures of Clustering in Superparamagnetic Colloidal Nanocomposites of an Inorganic and Hybrid Nature. Small, 2008, 4, 254-261.	5.2	30
148	Straightforward synthesis of Sulfur/N,S-codoped carbon cathodes for Lithium-Sulfur batteries. Scientific Reports, 2020, 10, 4866.	1.6	29
149	Influence of percolation on the modification of overall particle properties during gasification of porous solids. Chemical Engineering Science, 1997, 52, 1-11.	1.9	28
150	Functionalization of mesostructured silica–carbon composites. Materials Chemistry and Physics, 2013, 139, 281-289.	2.0	28
151	N/S-Co-doped Porous Carbon Nanoparticles Serving the Dual Function of Sulfur Host and Separator Coating in Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2020, 3, 3397-3407.	2.5	28
152	Analysis of the direct sulfation of calcium carbonate. Thermochimica Acta, 1994, 242, 161-172.	1.2	26
153	Unravelling the onset of the exchange bias effect in Ni(core)@NiO(shell) nanoparticles embedded in a mesoporous carbon matrix. Journal of Materials Chemistry C, 2015, 3, 5674-5682.	2.7	26
154	Sulphur retention by ash during fluidized bed combustion of bituminous coals. Fuel, 1992, 71, 507-511.	3.4	25
155	Analysis of major, minor and trace elements in coal by radioisotope X-ray fluorescence spectrometry. Fuel, 2001, 80, 255-261.	3.4	24
156	Fabrication of mesoporous SiO2–C–Fe3O4/γ–Fe2O3 and SiO2–C–Fe magnetic composites. Journal of Colloid and Interface Science, 2009, 340, 230-236.	5.0	24
157	Co nanoparticles inserted into a porous carbon amorphous matrix: the role of cooling field and temperature on the exchange bias effect. Physical Chemistry Chemical Physics, 2011, 13, 927-932.	1.3	24
158	Dry formation of low-density Nomexâ"¢ rejects-based activated carbon fiber composites. Carbon, 2000, 38, 2167-2170.	5.4	23
159	High Surface Area CuMn2O4 Prepared by Silica-Aquagel Confined co-precipitation. Characterization and Testing in Steam Reforming of Methanol (SRM). Catalysis Letters, 2007, 118, 8-14.	1.4	23
160	A simple and general approach for <i>in situ</i> synthesis of sulfur–porous carbon composites for lithium–sulfur batteries. Sustainable Energy and Fuels, 2019, 3, 3498-3509.	2.5	23
161	The effect of metallic salt additives on direct sulfation of calcium carbonate and on decomposition of sulfated samples. Thermochimica Acta, 1996, 276, 257-269.	1.2	22
162	Templated Synthesis of Mesoporous Superparamagnetic Polymers. Advanced Functional Materials, 2007, 17, 2321-2327.	7.8	21

#	Article	IF	CITATIONS
163	Nickel nanoparticles deposited into an activated porous carbon: synthesis, microstructure and magnetic properties. Physica Status Solidi - Rapid Research Letters, 2009, 3, 4-6.	1.2	21
164	Characterizing fuels for atmospheric fluidized bed combustion. Combustion and Flame, 1995, 103, 41-58.	2.8	20
165	Silicalite-1 membranes supported on porous carbon discs. Microporous and Mesoporous Materials, 2003, 59, 147-159.	2.2	20
166	Control of the structural properties of mesoporous polymers synthesized using porous silica materials as templates. Microporous and Mesoporous Materials, 2008, 112, 319-326.	2.2	20
167	Commentary: Methods of calculating the volumetric performance of a supercapacitor. Energy Storage Materials, 2016, 4, 154-155.	9.5	20
168	Modelling gasification reactions including the percolation phenomenon. Chemical Engineering Science, 1994, 49, 3813-3821.	1.9	19
169	Sulfation of dolomite particles at high CO2 partial pressures. Thermochimica Acta, 1995, 254, 63-78.	1.2	19
170	Decomposition of CaS particles at ambient conditions. Chemical Engineering Science, 2000, 55, 1661-1674.	1.9	19
171	Changes in textural properties of limestone and dolomite during calcination. Thermochimica Acta, 1991, 179, 125-134.	1.2	18
172	Direct measurement of ignition temperatures of pulverized coal particles. Fuel, 1993, 72, 1287-1291.	3.4	18
173	Kinetics of oxidation of CaS particles in the regime of high SO2 release. Chemical Engineering Science, 1999, 54, 495-506.	1.9	18
174	Bridging exchange bias effect in NiO and Ni(core)@NiO(shell) nanoparticles. Journal of Magnetism and Magnetic Materials, 2016, 400, 236-241.	1.0	18
175	Pore Characteristics for Efficient CO ₂ Storage in Hydrated Carbons. ACS Applied Materials & Interfaces, 2019, 11, 44390-44398.	4.0	18
176	Simulation of secondary fragmentation during fluidized bed combustion of char particles. Powder Technology, 1996, 89, 71-78.	2.1	17
177	Magnetically separable carbon capsules loaded with laccase and their application to dye degradation. RSC Advances, 2011, 1, 1756.	1.7	17
178	Template synthesis of carbon nanotubules by vapor deposition polymerization. Carbon, 2002, 40, 1600-1602.	5.4	16
179	A Simple Approach towards Highly Dense Solvated Graphene Films for Supercapacitors. ChemNanoMat, 2016, 2, 33-36.	1.5	16
180	Iron–Nitrogen-Doped Dendritic Carbon Nanostructures for an Efficient Oxygen Reduction Reaction. ACS Applied Energy Materials, 2018, 1, 6560-6568.	2.5	16

#	Article	IF	CITATIONS
181	Production of a nitrogenous humic fertilizer by the oxidation-ammoniation of lignite. Industrial & Engineering Chemistry Product Research and Development, 1984, 23, 620-624.	0.5	15
182	Sulphur retention by limestone particles under PFBC conditions. Fuel Processing Technology, 1993, 36, 65-71.	3.7	15
183	Flexible, Free‣tanding and Holey Graphene Paper for Highâ€Power Supercapacitors. ChemNanoMat, 2016, 2, 1055-1063.	1.5	15
184	Active carbons from semianthracites. Applied Catalysis A: General, 1993, 98, 115-123.	2.2	14
185	Effects of Clay Minerals on Char Texture and Combustion. Energy & Fuels, 1994, 8, 1007-1015.	2.5	14
186	Modelling the gasification of carbon fibres. Carbon, 1996, 34, 223-230.	5.4	13
187	Importance of micropore size distribution on adsorption at low adsorbate concentrations. Carbon, 2003, 41, 843-846.	5.4	13
188	Exchange-bias and superparamagnetic behaviour of Fe nanoparticles embedded in a porous carbon matrix. Journal of Non-Crystalline Solids, 2008, 354, 5219-5221.	1.5	13
189	Disentangling magnetic core/shell morphologies in Co-based nanoparticles. Journal of Materials Chemistry C, 2016, 4, 2302-2311.	2.7	13
190	Synthesis of mesostructured silica with tailorable textural porosity and particle size. Materials Letters, 2004, 58, 1494-1497.	1.3	12
191	altimg= sl62.gif_display= inline_overflow= scroll xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML"	1.9	12
192	Silica@Carbon mesoporous nanorattle structures synthesised by means of a selective etching strategy. Materials Letters, 2010, 64, 1587-1590.	1.3	11
193	Dense (non-hollow) carbon nanospheres: synthesis and electrochemical energy applications. Materials Today Nano, 2021, 16, 100147.	2.3	11
194	Modification of textural properties of Spanish coal-derived chars by activation with carbon dioxide. Fuel Processing Technology, 1990, 24, 305-310.	3.7	10
195	Microporous structure of chars produced by pyrolysis of preoxidized coals. Journal of Analytical and Applied Pyrolysis, 1995, 34, 13-28.	2.6	10
196	Templated synthesis of high surface area inorganic oxides by silica aquagel-confined co-precipitation. Microporous and Mesoporous Materials, 2008, 112, 291-298.	2.2	10
197	Control of crystalline phases in magnetic Fe nanoparticles inserted inside a matrix of porous carbon. Journal of Magnetism and Magnetic Materials, 2010, 322, 1300-1303.	1.0	10
198	Highly Packed Monodisperse Porous Carbon Microspheres for Energy Storage in Supercapacitors and Liâ^'S Batteries. ChemElectroChem, 2020, 7, 3798-3810.	1.7	10

#	Article	IF	CITATIONS
199	Onion-like nanoparticles with γ-Fe core surrounded by a α-Fe/Fe-oxide double shell. Journal of Alloys and Compounds, 2011, 509, S320-S322.	2.8	9
200	Oxiâ€ammoniation of pineâ€bark particles. Canadian Journal of Chemical Engineering, 1985, 63, 835-839.	0.9	8
201	Prediction of attrition in a continuous fluid-bed system. Powder Technology, 1991, 67, 291-293.	2.1	8
202	Templated synthesis of nanosized mesoporous carbons. Materials Research Bulletin, 2008, 43, 1898-1904.	2.7	8
203	CO2 Storage on Nanoporous Carbons. Green Energy and Technology, 2019, , 287-330.	0.4	8
204	Adsorption isotherms of several hydrocarbons on Î ³ -alumina by gas chromatography. Reaction Kinetics and Catalysis Letters, 1986, 31, 173-179.	0.6	6
205	Variation of the textural properties of a coke during gasification. Vacuum, 1989, 39, 677-681.	1.6	6
206	Combustion kinetics of coke particles in a fluidized bed reactor. Fuel Processing Technology, 1994, 38, 193-210.	3.7	6
207	SO2 Retention over polyarylamide-based activated carbon fibers. Environmental Progress, 2000, 19, 246-254.	0.8	6
208	Stability and oxidative stabilisation of sulphided calcareous sorbents from entrained flow gasifiers. Chemical Engineering Science, 2000, 55, 3697-3714.	1.9	6
209	Encapsulation of Polypyrrole Chains Inside the Framework of an Ordered Mesoporous Carbon. Macromolecular Rapid Communications, 2005, 26, 1055-1059.	2.0	6
210	Calculation of Burnoff Distributions of Char Particles in a Bubbling Fluidized Bed Reactor by Means of Batch Combustion Experiments. Chemical Engineering Research and Design, 1998, 76, 864-872.	2.7	5
211	Cellulose as a Precursor of Highâ€Performance Energy Storage Materials in Li–S Batteries and Supercapacitors. Energy Technology, 2021, 9, 2100268.	1.8	5
212	Entangled core/shell magnetic structure driven by surface magnetic symmetry-breaking in Cr ₂ O ₃ nanoparticles. Journal of Materials Chemistry C, 2022, 10, 1798-1807.	2.7	5
213	Disclosure of Double Exchange Bias Effect in Chromium (III) Oxide Nanoparticles. IEEE Transactions on Magnetics, 2017, 53, 1-4.	1.2	4
214	Prediction of combustion efficiency in a fluidized bed combustor by statistical experimental design. Fuel, 1991, 70, 861-864.	3.4	3
215	A SIMPLE METHOD FOR STUDYING THE KINETICS OF GAS-SOLID REACTIONS IN A FLUIDIZED BED REACTOR. Chemical Engineering Communications, 1994, 130, 241-250.	1.5	3
216	Influence of separation temperature on the performance of adsorption-selective carbon membranes. Carbon, 2003, 41, 2016-2019.	5.4	3

#	Article	IF	CITATIONS
217	On the exchange bias effect in NiO nanoparticles with a core(antiferromagnetic)/shell (spin glass) morphology. Journal of Physics: Conference Series, 2015, 663, 012001.	0.3	3
218	Monodisperse Porous Carbon Nanospheres with Ultraâ€High Surface Area for Energy Storage in Electrochemical Capacitors. Batteries and Supercaps, 2022, 5, .	2.4	3
219	Kinetic study of the reaction of a metallurgical coke with CO2. Solid State Ionics, 1990, 38, 75-80.	1.3	2
220	Activated Carbon from Bituminous Coal. Studies in Surface Science and Catalysis, 1991, 63, 439-448.	1.5	2
221	Influence of coal preoxidation on textural properties of chars. Studies in Surface Science and Catalysis, 1994, , 651-659.	1.5	2
222	Facile synthesis of graphitic carbons decorated with SnO2 nanoparticles and their application as high capacity lithium-ion battery anodes. Journal of Applied Electrochemistry, 2012, 42, 901-908.	1.5	2
223	Monodisperse Porous Carbon Nanospheres with Ultraâ€High Surface Area for Energy Storage in Electrochemical Capacitors. Batteries and Supercaps, 0, , .	2.4	2
224	Laboratory testing of different SO2 sorbents for dry sorbent injection. Coal Science and Technology, 1995, 24, 1851-1854.	0.0	1
225	Preparation and Characterization of Mesoporous Hybrid Particle-Fiber Carbon Monoliths. Advanced Engineering Materials, 2002, 4, 291-294.	1.6	0
226	Hydrothermal Carbonization of Abundant Renewable Natural Organic Chemicals for High-Performance Supercapacitor Electrodes. Advanced Energy Materials, 2011, , n/a-n/a.	10.2	0