Jinxian Weng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5234050/publications.pdf Version: 2024-02-01

INVIAN WENC

#	Article	IF	CITATIONS
1	Verification analysis of relationship between driving failure probability and traffic accident rate. Journal of Transportation Safety and Security, 2023, 15, 563-583.	1.1	0
2	A three-step methodology to complement underreporting maritime accident records. Journal of Transportation Safety and Security, 2022, 14, 1451-1469.	1.1	1
3	Spatial-temporal varying coefficient model for lane-changing behavior in work zone merging areas. Journal of Transportation Safety and Security, 2022, 14, 949-972.	1.1	9
4	Incorporating multi-scenario underreporting rates into MICE for underreported maritime accident record analysis. Ocean Engineering, 2022, 246, 110620.	1.9	8
5	Detection of abnormal ship trajectory based on the complex polygon. Journal of Navigation, 2022, 75, 966-983.	1.0	3
6	Impact analysis of ECA policies on ship trajectories and emissions. Marine Pollution Bulletin, 2022, 179, 113687.	2.3	12
7	Bootstrap-Tobit model for maritime accident economic loss considering underreporting issues. Transportmetrica A: Transport Science, 2021, 17, 1055-1076.	1.3	2
8	Evaluation of travel delay and accident risk at moving work zones. Journal of Transportation Safety and Security, 2021, 13, 622-641.	1.1	9
9	A quantitative risk assessment model for evaluating hazmat transportation accident risk. Safety Science, 2021, 137, 105198.	2.6	17
10	Impact analysis of external factors on human errors using the ARBN method based on small-sample ship collision records. Ocean Engineering, 2021, 236, 109533.	1.9	18
11	Impacts of the COVID-19 epidemic on merchant ship activity and pollution emissions in Shanghai port waters. Science of the Total Environment, 2021, 790, 148198.	3.9	41
12	Finite Mixture Distribution Method to Model Vehicle Headways at Port Collector-Distributor Roads. Journal of Transportation Engineering Part A: Systems, 2021, 147, .	0.8	1
13	Methodology for Estimating Waterway Traffic Capacity at Shanghai Estuary of the Yangtze River. Journal of Navigation, 2020, 73, 75-91.	1.0	7
14	Estimation of vessel collision frequency in the Yangtze River estuary considering dynamic ship domains. Journal of Marine Science and Technology, 2020, 25, 964-977.	1.3	11
15	Ship emission estimation with high spatial-temporal resolution in the Yangtze River estuary using AIS data. Journal of Cleaner Production, 2020, 248, 119297.	4.6	46
16	Predicting Crash Injury Severity for the Highways Involving Traffic Hazards and Those Involving No Traffic Hazards. , 2020, , .		0
17	Probabilistic speed–flow models in highway construction work zones. Proceedings of the Institution of Civil Engineers: Transport, 2020, , 1-7	0.3	0
18	Exploring effects of ship traffic characteristics and environmental conditions on ship collision frequency. Maritime Policy and Management, 2020, 47, 523-543.	1.9	28

#	Article	IF	CITATIONS
19	Economic Loss Analysis of Fishing Boat Collisions Considering Spatial-Temporal Interaction Effects. Journal of Navigation, 2020, 73, 1069-1086.	1.0	2
20	Exploring the effectiveness of ECA policies in reducing pollutant emissions from merchant ships in Shanghai port waters. Marine Pollution Bulletin, 2020, 155, 111164.	2.3	26
21	Random Coefficient Models for Work Zone Headway Distribution. Journal of Transportation Engineering Part A: Systems, 2019, 145, .	0.8	15
22	The tolerable waiting time: A generalized Pareto distribution model with empirical investigation. Computers and Industrial Engineering, 2019, 137, 106019.	3.4	4
23	Optimizing Strategies for the Urban Work Zone with Time Window Constraints. Sustainability, 2019, 11, 4218.	1.6	5
24	Maximum likelihood regression tree with two-variable splitting scheme for subway incident delay. Transportmetrica A: Transport Science, 2019, 15, 1061-1080.	1.3	6
25	Bayesian Regression Model for Estimating Economic Loss Resulting from Two-Ship Collisions. Transportation Research Record, 2019, 2673, 164-172.	1.0	1
26	Ship routing and scheduling problem for steel plants cluster alongside the Yangtze River. Transportation Research, Part E: Logistics and Transportation Review, 2019, 122, 198-210.	3.7	23
27	Investigation of occurrence likelihood of human errors in shipping operations. Ocean Engineering, 2019, 182, 28-37.	1.9	41
28	A separate analysis of crash frequency for the highways involving traffic hazards and involving no traffic hazards. Journal of Transportation Safety and Security, 2019, , 1-20.	1.1	19
29	Uncertainty-based prediction of work zone capacity using a Bayesian approach. Proceedings of the Institution of Civil Engineers: Transport, 2019, 172, 24-35.	0.3	2
30	Exploring shipping accident contributory factors using association rules. Journal of Transportation Safety and Security, 2019, 11, 36-57.	1.1	44
31	Assess economic and environmental trade-off for inland port location. International Journal of Shipping and Transport Logistics, 2019, 11, 243.	0.2	1
32	Evaluation of Two-Ship Collision Severity using Ordered Probit Approaches. Journal of Navigation, 2018, 71, 822-836.	1.0	26
33	Economic feasibility of an NSR/SCR-combined container service on the Asia-Europe lane: a new approach dynamically considering sea ice extent. Maritime Policy and Management, 2018, 45, 514-529.	1.9	37
34	Analysis of Vessel Traffic Characteristics in the Yangtze River Estuary Based on AIS Data. , 2018, , .		1
35	Time-varying mixed logit model for vehicle merging behavior in work zone merging areas. Accident Analysis and Prevention, 2018, 117, 328-339.	3.0	56
36	A Zero-Inflated Negative Binomial Regression Model to Evaluate Ship Sinking Accident Mortalities. Transportation Research Record, 2018, 2672, 65-72.	1.0	2

#	Article	IF	CITATIONS
37	GeneralizedFdistribution model with random parameters for estimating property damage cost in maritime accidents. Maritime Policy and Management, 2018, 45, 963-978.	1.9	12
38	Combining zero-inflated negative binomial regression with MLRT techniques: An approach to evaluating shipping accident casualties. Ocean Engineering, 2018, 166, 135-144.	1.9	31
39	Impact Analysis of Mega Vessels on Container Terminal Operations. Transportation Research Procedia, 2017, 25, 187-204.	0.8	23
40	Development of a quantitative risk assessment model for ship collisions in fairways. Safety Science, 2017, 91, 71-83.	2.6	86
41	Time-dependent drivers' merging behavior model in work zone merging areas. Transportation Research Part C: Emerging Technologies, 2017, 80, 409-422.	3.9	35
42	Liner Shipping Fleet Deployment with Sustainable Collaborative Transportation. Sustainability, 2016, 8, 165.	1.6	12
43	A multi-objective model for cordon-based congestion pricing schemes with nonlinear distance tolls. Journal of Central South University, 2016, 23, 1273-1282.	1.2	12
44	Comparative Study on Beijing and Singapore's Work Zone Rear-End Crash Risks. , 2016, , .		1
45	Effects of intersection field of view on emergent collision avoidance performance at unsignalized intersections: analysis based on driving simulator experiments. Journal of Advanced Transportation, 2016, 50, 683-700.	0.9	10
46	Effect of auditory in-vehicle warning information on drivers' brake response time to red-light running vehicles during collision avoidance. Transportation Research Part F: Traffic Psychology and Behaviour, 2016, 40, 56-67.	1.8	39
47	Evaluation of Shipping Accident Casualties using Zero-inflated Negative Binomial Regression Technique. Journal of Navigation, 2016, 69, 433-448.	1.0	27
48	Investigation of work zone crash casualty patterns using association rules. Accident Analysis and Prevention, 2016, 92, 43-52.	3.0	93
49	Analysis of Sideswipe Collision Precursors Considering the Spatial-Temporal Characteristics of Freeway Traffic. Journal of Transportation Engineering, 2016, 142, 04016064.	0.9	3
50	Driver injury severity analysis for two work zone types. Proceedings of the Institution of Civil Engineers: Transport, 2016, 169, 97-106.	0.3	8
51	Probability distributionâ€based model for work zone capacity prediction. Journal of Advanced Transportation, 2016, 50, 165-179.	0.9	13
52	A hybrid finite mixture model for exploring heterogeneous ordering patterns of driver injury severity. Accident Analysis and Prevention, 2016, 89, 62-73.	3.0	25
53	Cluster-Based Logistic Regression Model for Holiday Travel Mode Choice. Procedia Engineering, 2016, 137, 729-737.	1.2	29
54	Modeling the probability of freeway lane-changing collision occurrence considering intervehicle interaction. Traffic Injury Prevention, 2016, 17, 181-187.	0.6	8

#	Article	IF	CITATIONS
55	Modeling Vehicle Merging Behavior in Work Zone Merging Areas During the Merging Implementation Period. IEEE Transactions on Intelligent Transportation Systems, 2016, 17, 917-925.	4.7	32
56	Modeling traffic crash rates of road segments through a lognormal hurdle framework with flexible scale parameter. Journal of Advanced Transportation, 2015, 49, 928-940.	0.9	31
57	Incorporating work zone configuration factors into speedâ€flow and capacity models. Journal of Advanced Transportation, 2015, 49, 371-384.	0.9	18
58	Evaluation of Keep-Right-Except-Pass Rule Using Cellular Automata Model. , 2015, , .		0
59	Development of a maximum likelihood regression tree-based model for predicting subway incident delay. Transportation Research Part C: Emerging Technologies, 2015, 57, 30-41.	3.9	17
60	Holiday travel behavior analysis and empirical study under integrated multimodal travel information service. Transport Policy, 2015, 39, 21-36.	3.4	35
61	In-depth analysis of drivers' merging behavior and rear-end crash risks in work zone merging areas. Accident Analysis and Prevention, 2015, 77, 51-61.	3.0	77
62	Investigation of shipping accident injury severity and mortality. Accident Analysis and Prevention, 2015, 76, 92-101.	3.0	99
63	Analysis of the relationship between aggregated traffic volume and traffic conflicts on expressways. Transportmetrica A: Transport Science, 2015, 11, 648-658.	1.3	11
64	Ship Collision Frequency Estimation in Port Fairways: A Case Study. Journal of Navigation, 2015, 68, 602-618.	1.0	43
65	Cluster-based lognormal distribution model for accident duration. Transportmetrica A: Transport Science, 2015, 11, 345-363.	1.3	19
66	How Does the Driver's Perception Reaction Time Affect the Performances of Crash Surrogate Measures?. PLoS ONE, 2015, 10, e0138617.	1.1	29
67	Bus travel time reliability analysis: a case study. Proceedings of the Institution of Civil Engineers: Transport, 2014, 167, 178-184.	0.3	17
68	Rearâ€end crash potential estimation in the work zone merging areas. Journal of Advanced Transportation, 2014, 48, 238-249.	0.9	33
69	Analysis of Uncertainty Associated with Response Time in Work Zone Traffic Accidents. , 2014, , .		1
70	Development of a subway operation incident delay model using accelerated failure time approaches. Accident Analysis and Prevention, 2014, 73, 12-19.	3.0	37
71	Analysis of work zone rear-end crash risk for different vehicle-following patterns. Accident Analysis and Prevention, 2014, 72, 449-457.	3.0	54
72	Analysis with Automatic Identification System Data of Vessel Traffic Characteristics in the Singapore Strait. Transportation Research Record, 2014, 2426, 33-43.	1.0	38

#	Article	IF	CITATIONS
73	Potential crash risks of expressway on-ramps and off-ramps: A case study in Beijing, China. Safety Science, 2014, 70, 58-62.	2.6	86
74	Vehicle headway distribution in work zones. Transportmetrica A: Transport Science, 2014, 10, 285-303.	1.3	26
75	New Methodology to Determine Work Zone Capacity Distribution. Transportation Research Record, 2014, 2461, 25-31.	1.0	10
76	Uncertainty Analysis of Accident Notification Time and Emergency Medical Service Response Time in Work Zone Traffic Accidents. Traffic Injury Prevention, 2013, 14, 150-158.	0.6	22
77	Treeâ€Based Logistic Regression Approach for Work Zone Casualty Risk Assessment. Risk Analysis, 2013, 33, 493-504.	1.5	32
78	Estimating capacity and traffic delay in work zones: An overview. Transportation Research Part C: Emerging Technologies, 2013, 35, 34-45.	3.9	37
79	Optimal subwork zone length and project start time for short-term daytime work zones from the contractor's perspective. Transportation Research Part C: Emerging Technologies, 2013, 29, 72-83.	3.9	7
80	Optimal subwork zone operational strategy for shortâ€ŧerm work zone projects in fourâ€ŀane twoâ€way freeways. Journal of Advanced Transportation, 2013, 47, 151-169.	0.9	12
81	Vessel Collision Frequency Estimation in the Singapore Strait. Journal of Navigation, 2012, 65, 207-221.	1.0	117
82	Classification and Regression Tree Approach for Predicting Drivers' Merging Behavior in Short-Term Work Zone Merging Areas. Journal of Transportation Engineering, 2012, 138, 1062-1070.	0.9	41
83	Ensemble Tree Approach to Estimating Work Zone Capacity. Transportation Research Record, 2012, 2286, 56-67.	1.0	17
84	Effects of environment, vehicle and driver characteristics on risky driving behavior at work zones. Safety Science, 2012, 50, 1034-1042.	2.6	63
85	Decision Tree–Based Model for Estimation of Work Zone Capacity. Transportation Research Record, 2011, 2257, 40-50.	1.0	28
86	An improved cellular automata model for heterogeneous work zone traffic. Transportation Research Part C: Emerging Technologies, 2011, 19, 1263-1275.	3.9	78
87	Evaluation of rear-end crash risk at work zone using work zone traffic data. Accident Analysis and Prevention, 2011, 43, 1291-1300.	3.0	110
88	Analysis of driver casualty risk for different work zone types. Accident Analysis and Prevention, 2011, 43, 1811-1817.	3.0	50
89	A Genetic algorithm approach to assessing work zone casualty risk. Safety Science, 2011, 49, 1283-1288.	2.6	25
90	Modeling speed-flow relationship and merging behavior in work zone merging areas. Transportation Research Part C: Emerging Technologies, 2011, 19, 985-996.	3.9	59

#	Article	IF	CITATIONS
91	Collision avoidance analysis for transition taper length. Transportation Planning and Technology, 2011, 34, 811-822.	0.9	2
92	A probabilistic quantitative risk assessment model for the long-term work zone crashes. Accident Analysis and Prevention, 2010, 42, 1866-1877.	3.0	71
93	Cellular Automata Model for Work Zone Traffic. Transportation Research Record, 2010, 2188, 131-139.	1.0	31