
## P Wilson

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5234013/publications.pdf Version: 2024-02-01



P WUSON

| #  | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A critical review on the variations in anodization parameters toward microstructural formation of TiO <sub>2</sub> nanotubes. Electrochemical Science Advances, 2022, 2, e202100083.                                                                  | 1.2 | 15        |
| 2  | Visible light active black TiO2 nanostructures and its RGO based nanocomposite for enhanced hydrogen generation and electrochemical potency. Applied Surface Science Advances, 2022, 7, 100215.                                                       | 2.9 | 7         |
| 3  | Service Learning Science Camps Among Tribals as a Tool for Capacity Building Among Students – A Step<br>Toward Inclusive Chemistry Education. Journal of Chemical Education, 2022, 99, 1700-1707.                                                     | 1.1 | 2         |
| 4  | Facile synthesis of black N-TiO2Â/ N-RGO nanocompositeÂfor hydrogen generation and electrochemical<br>applications:ÂNew insights into the structure-performance relationship. Applied Surface Science<br>Advances, 2022, 9, 100249.                   | 2.9 | 10        |
| 5  | Morphology and Functionalization Dependent Sensing of Dopamine on Lâ€Arginine Functionalized<br>Hydroxyapatite Nanoparticles. ChemistrySelect, 2022, 7, .                                                                                             | 0.7 | ο         |
| 6  | Tuning the type of nitrogen on N-RGO supported on N-TiO2 under ultrasonication/hydrothermal<br>treatment for efficient hydrogen evolution – A mechanistic overview. Ultrasonics Sonochemistry,<br>2020, 64, 104866.                                   | 3.8 | 11        |
| 7  | Nanoscale Hydroxyapatite for Electrochemical Sensing of Uric Acid: Roles of Mesopore Volume and Surface Acidity. ACS Applied Nano Materials, 2020, 3, 7761-7773.                                                                                      | 2.4 | 23        |
| 8  | Effect of Ni, Pd, and Pt Nanoparticle Dispersion on Thick Films of TiO <sub>2</sub> Nanotubes for<br>Hydrogen Sensing: TEM and XPS Studies. ACS Omega, 2020, 5, 11352-11360.                                                                          | 1.6 | 23        |
| 9  | A plausible impact on the role of pulses in anodized TiO2 nanotube arrays enhancing Ti3+ defects.<br>Journal of Nanoparticle Research, 2020, 22, 1.                                                                                                   | 0.8 | 4         |
| 10 | Silver nanoparticle–decorated PANI/reduced graphene oxide for sensing of hydrazine in water and inhibition studies on microorganism. Ionics, 2020, 26, 3123-3133.                                                                                     | 1.2 | 13        |
| 11 | Chemo-resistive detection of hydrogen in argon using Pd nanoparticles on TiO <sub>2</sub><br>nanotubes prepared via rapid breakdown anodization. Materials Research Express, 2019, 6, 095065.                                                         | 0.8 | 4         |
| 12 | WO <sub>3</sub> Nanorods Supported on Mesoporous TiO <sub>2</sub> Nanotubes as<br>One-Dimensional Nanocomposites for Rapid Degradation of Methylene Blue under Visible Light<br>Irradiation. Journal of Physical Chemistry C, 2019, 123, 27448-27464. | 1.5 | 21        |
| 13 | Ultrasonically aided selective stabilization of pyrrolic type nitrogen by one pot nitrogen doped and hydrothermally reduced Graphene oxide/Titania nanocomposite (N-TiO2/N-RGO) for H2 production.<br>Ultrasonics Sonochemistry, 2019, 57, 62-72.     | 3.8 | 23        |
| 14 | Influence of noble metal loading and effect of temperature on the hydrogen sensing behavior of the platinum sensitized titania nanotubes. Materials Research Express, 2019, 6, 015006.                                                                | 0.8 | 7         |
| 15 | Strontium incorporated hydroxyapatite/hydrothermally reduced graphene oxide nanocomposite as a cytocompatible material. Ceramics International, 2019, 45, 5475-5485.                                                                                  | 2.3 | 23        |
| 16 | Investigations on sonofragmentation of hydroxyapatite crystals as a function of strontium incorporation. Ultrasonics Sonochemistry, 2019, 50, 188-199.                                                                                                | 3.8 | 20        |
| 17 | Photocatalytic water splitting of TiO <sub>2</sub> nanotubes powders prepared via rapid breakdown<br>anodization sensitized with Pt, Pd and Ni nanoparticles. Materials Technology, 2018, 33, 288-300.                                                | 1.5 | 28        |
| 18 | Cobalt phthalocyanine tagged graphene nanoflakes for enhanced electrocatalytic detection of N-acetylcysteine by amperometry method. Ionics, 2018, 24, 2807-2819.                                                                                      | 1.2 | 10        |

**P**WILSON

| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Investigating the photocatalytic degradation property of Pt, Pd and Ni nanoparticles-loaded<br>TiO <sub>2</sub> nanotubes powder prepared via rapid breakdown anodization. Environmental<br>Technology (United Kingdom), 2018, 39, 2994-3005.        | 1.2 | 12        |
| 20 | l-arginine directed and ultrasonically aided growth of nanocrystalline hydroxyapatite particles with<br>tunable morphology. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538,<br>270-279.                                 | 2.3 | 27        |
| 21 | Electrocatalytic Investigation of Group X Metal Nanoparticles Loaded TiO2Nanotubes Powder<br>Prepared by Rapid Breakdown Anodization for Selective H2O2Sensing. Journal of the Electrochemical<br>Society, 2017, 164, B356-B365.                     | 1.3 | 11        |
| 22 | Synthesis of Well-Dispersed Silver Nanoparticles on Polypyrrole/Reduced Graphene Oxide<br>Nanocomposite for Simultaneous Detection of Toxic Hydrazine and Nitrite in Water Sources. Journal<br>of the Electrochemical Society, 2017, 164, B620-B631. | 1.3 | 23        |
| 23 | Characterization of Surface Chromia Species on CrOx/TiO2 Catalysts. Eurasian<br>Chemico-Technological Journal, 2017, 4, 249.                                                                                                                         | 0.3 | 1         |
| 24 | Structural Properties and Catalytic Behaviour of CrOx/TiO2 Systems. Eurasian Chemico-Technological<br>Journal, 2017, 6, 79.                                                                                                                          | 0.3 | 1         |
| 25 | Role of triton X-100 and hydrothermal treatment on the morphological features of nanoporous hydroxyapatite nanorods. Materials Science and Engineering C, 2016, 63, 554-562.                                                                         | 3.8 | 36        |
| 26 | Room Temperature Hydrogen Sensing of Pt Loaded TiO <sub>2</sub> Nanotubes Powders Prepared via<br>Rapid Breakdown Anodization. Journal of the Electrochemical Society, 2016, 163, B15-B18.                                                           | 1.3 | 17        |
| 27 | Surface characterization of rapidly grown TiO2 nanotubes assisted by field supporting effect. AIP Conference Proceedings, 2015, , .                                                                                                                  | 0.3 | 0         |
| 28 | A comparative study on the morphological features of highly ordered titania nanotube arrays prepared via galvanostatic and potentiostatic modes. Current Applied Physics, 2014, 14, 868-875.                                                         | 1.1 | 17        |
| 29 | A comparative study of hydroxyapatites synthesized using various fuels through aqueous and alcohol mediated combustion routes. Ceramics International, 2013, 39, 3519-3532.                                                                          | 2.3 | 15        |
| 30 | Synthesis of nanoscale hydroxyapatite particles using triton X-100 as an organic modifier. Ceramics<br>International, 2013, 39, 771-777.                                                                                                             | 2.3 | 27        |
| 31 | Effect of nanoporous ZrO2 crystal size on the surface sulphur capacity and performance of sulfated zirconia as an acidic catalytic material. Studies in Surface Science and Catalysis, 2005, , 385-392.                                              | 1.5 | 2         |
| 32 | Thermoanalytical investigations on supported chromia catalysts. Thermochimica Acta, 2003, 399, 109-120.                                                                                                                                              | 1.2 | 10        |
| 33 | Characterisation of ceria supported chromia catalysts. Applied Catalysis A: General, 2000, 201, 23-35.                                                                                                                                               | 2.2 | 16        |
| 34 | Hydroxyapatite as a bifunctional nanocatalyst for solventless Henry reaction: a demonstration of morphology-dependent catalysis. New Journal of Chemistry, 0, , .                                                                                    | 1.4 | 3         |