List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5233452/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Flexor tendon repair using a reinforced tubular, medicated electrospun construct. Journal of<br>Orthopaedic Research, 2022, 40, 750-760.                                                                                | 1.2 | 5         |
| 2  | Design and Synthesis of Hybrid Thermo-Responsive Hydrogels Based on Poly(2-oxazoline) and Gelatin<br>Derivatives. Gels, 2022, 8, 64.                                                                                    | 2.1 | 6         |
| 3  | Proteomics as a tool to gain next level insights into photo-crosslinkable biopolymer modifications.<br>Bioactive Materials, 2022, 17, 204-220.                                                                          | 8.6 | 3         |
| 4  | RNAi-Based Biocontrol Products: Market Status, Regulatory Aspects, and Risk Assessment. Frontiers in Insect Science, 2022, 1, .                                                                                         | 0.9 | 36        |
| 5  | Tissue engineered scaffolds for corneal endothelial regeneration: a material's perspective.<br>Biomaterials Science, 2022, 10, 2440-2461.                                                                               | 2.6 | 11        |
| 6  | Commercial wound dressings for the treatment of exuding wounds: an in-depth physico-chemical comparative study. Burns and Trauma, 2022, 10, .                                                                           | 2.3 | 39        |
| 7  | Capacitive sensing of an amphetamine drug precursor in aqueous samples: Application of novel<br>molecularly imprinted polymers for benzyl methyl ketone detection. Biosensors and Bioelectronics,<br>2021, 172, 112773. | 5.3 | 11        |
| 8  | Activated Carbon Containing PEGâ€Based Hydrogels as Novel Candidate Dressings for the Treatment of<br>Malodorous Wounds. Macromolecular Materials and Engineering, 2021, 306, .                                         | 1.7 | 14        |
| 9  | Polymer architecture as key to unprecedented high-resolution 3D-printing performance: The case of<br>biodegradable hexa-functional telechelic urethane-based poly-Îμ-caprolactone. Materials Today, 2021, 44,<br>25-39. | 8.3 | 28        |
| 10 | Design and development of a reinforced tubular electrospun construct for the repair of ruptures of deep flexor tendons. Materials Science and Engineering C, 2021, 119, 111504.                                         | 3.8 | 15        |
| 11 | Tuning the Phenotype of Cartilage Tissue Mimics by Varying Spheroid Maturation and<br>Methacrylamideâ€Modified Gelatin Hydrogel Characteristics. Macromolecular Bioscience, 2021, 21,<br>2000401.                       | 2.1 | 7         |
| 12 | Challenges in the Fabrication of Biodegradable and Implantable Optical Fibers for Biomedical Applications. Materials, 2021, 14, 1972.                                                                                   | 1.3 | 13        |
| 13 | Novel multiplex capacitive sensor based on molecularly imprinted polymers: A promising tool for tracing specific amphetamine synthesis markers in sewage water. Biosensors and Bioelectronics, 2021, 178, 113006.       | 5.3 | 13        |
| 14 | Tubular bioartificial organs: From physiological requirements to fabrication processes and resulting properties. A critical review Cells Tissues Organs, 2021, , .                                                      | 1.3 | 2         |
| 15 | Recent advances in electrochemical monitoring of zearalenone in diverse matrices. Food Chemistry, 2021, 353, 129342.                                                                                                    | 4.2 | 23        |
| 16 | Engineering microvasculature by 3D bioprinting of prevascularized spheroids in photo-crosslinkable gelatin. Biofabrication, 2021, 13, 045021.                                                                           | 3.7 | 32        |
| 17 | Photoâ€Crosslinked Gelatinâ€Based Hydrogel Films to Support Wound Healing. Macromolecular<br>Bioscience, 2021, 21, e2100246.                                                                                            | 2.1 | 10        |
| 18 | Potential of poly(alkylene terephthalate)s to control endothelial cell adhesion and viability.<br>Materials Science and Engineering C, 2021, 129, 112378.                                                               | 3.8 | 10        |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Development of photo-crosslinkable collagen hydrogel building blocks for vascular tissue<br>engineering applications: A superior alternative to methacrylated gelatin?. Materials Science and<br>Engineering C, 2021, 130, 112460. | 3.8 | 19        |
| 20 | Thiol-norbornene gelatin hydrogels: influence of thiolated crosslinker on network properties and high definition 3D printing. Biofabrication, 2021, 13, 015017.                                                                    | 3.7 | 34        |
| 21 | Poly(alkylene terephthalate)s: From current developments in synthetic strategies towards<br>applications. European Polymer Journal, 2021, 161, 110840.                                                                             | 2.6 | 25        |
| 22 | Increasing the Microfabrication Performance of Synthetic Hydrogel Precursors through Molecular Design. Biomacromolecules, 2021, 22, 4919-4932.                                                                                     | 2.6 | 6         |
| 23 | Thiol–Gelatin–Norbornene Bioink for Laserâ€Based Highâ€Definition Bioprinting. Advanced Healthcare<br>Materials, 2020, 9, e1900752.                                                                                                | 3.9 | 75        |
| 24 | On the Characterization of Novel Step-Index Biocompatible and Biodegradable poly(D,L-lactic acid)<br>Based Optical Fiber. Journal of Lightwave Technology, 2020, 38, 1905-1914.                                                    | 2.7 | 13        |
| 25 | Maillard conjugation of whey protein isolate with water-soluble fraction of almond gum or flaxseed mucilage by dry heat treatment. Food Research International, 2020, 128, 108779.                                                 | 2.9 | 35        |
| 26 | Recent developments in electrochemical detection of illicit drugs in diverse matrices. Biosensors and Bioelectronics, 2020, 169, 112579.                                                                                           | 5.3 | 70        |
| 27 | High-Resolution 3D Bioprinting of Photo-Cross-linkable Recombinant Collagen to Serve Tissue<br>Engineering Applications. Biomacromolecules, 2020, 21, 3997-4007.                                                                   | 2.6 | 51        |
| 28 | Shapeâ€Memory Polymers for Biomedical Applications. Advanced Functional Materials, 2020, 30, 1909047.                                                                                                                              | 7.8 | 173       |
| 29 | Hybrid Bioprinting of Chondrogenically Induced Human Mesenchymal Stem Cell Spheroids. Frontiers<br>in Bioengineering and Biotechnology, 2020, 8, 484.                                                                              | 2.0 | 66        |
| 30 | Bioprinting predifferentiated adipose-derived mesenchymal stem cell spheroids with methacrylated<br>gelatin ink for adipose tissue engineering. Journal of Materials Science: Materials in Medicine, 2020, 31,<br>36.              | 1.7 | 37        |
| 31 | Designer Descemet Membranes Containing PDLLA and Functionalized Gelatins as Corneal Endothelial<br>Scaffold. Advanced Healthcare Materials, 2020, 9, e2000760.                                                                     | 3.9 | 25        |
| 32 | Methacrylation increase growth and differentiation of primary human osteoblasts for gelatin<br>hydrogels. Emergent Materials, 2020, 3, 559-566.                                                                                    | 3.2 | 4         |
| 33 | Evaluation of 3D Printed Gelatinâ€Based Scaffolds with Varying Pore Size for MSCâ€Based Adipose Tissue<br>Engineering. Macromolecular Bioscience, 2020, 20, e1900364.                                                              | 2.1 | 41        |
| 34 | Highâ€ŧhroughput fabrication of vascularized adipose microtissues for 3D bioprinting. Journal of<br>Tissue Engineering and Regenerative Medicine, 2020, 14, 840-854.                                                               | 1.3 | 26        |
| 35 | Extrusion-based 3D printing of photo-crosslinkable gelatin and κ-carrageenan hydrogel blends for adipose tissue regeneration. International Journal of Biological Macromolecules, 2019, 140, 929-938.                              | 3.6 | 73        |
| 36 | (Photo-)crosslinkable gelatin derivatives for biofabrication applications. Acta Biomaterialia, 2019, 97, 46-73.                                                                                                                    | 4.1 | 120       |

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Amorphous random copolymers of lacOCA and manOCA for the design of biodegradable polyesters with tuneable properties. European Polymer Journal, 2019, 118, 685-693.                                         | 2.6 | 3         |
| 38 | Impact of Hydrogel Stiffness on Differentiation of Human Adipose-Derived Stem Cell Microspheroids.<br>Tissue Engineering - Part A, 2019, 25, 1369-1380.                                                     | 1.6 | 71        |
| 39 | Extrusion Printed Scaffolds with Varying Pore Size As Modulators of MSC Angiogenic Paracrine<br>Effects. ACS Biomaterials Science and Engineering, 2019, 5, 5348-5358.                                      | 2.6 | 27        |
| 40 | Combined effect of Laponite and polymer molecular weight on the cell-interactive properties of synthetic PEO-based hydrogels. Reactive and Functional Polymers, 2019, 136, 95-106.                          | 2.0 | 19        |
| 41 | Poly(D,L-Lactic Acid) (PDLLA) Biodegradable and Biocompatible Polymer Optical Fiber. Journal of<br>Lightwave Technology, 2019, 37, 1916-1923.                                                               | 2.7 | 36        |
| 42 | Biomimetic strategy towards gelatin coatings on PET. Effect of protocol on coating stability and cell-interactive properties. Journal of Materials Chemistry B, 2019, 7, 1258-1269.                         | 2.9 | 9         |
| 43 | Additive manufacturing of photo-crosslinked gelatin scaffolds for adipose tissue engineering. Acta<br>Biomaterialia, 2019, 94, 340-350.                                                                     | 4.1 | 94        |
| 44 | Development of Gelatinâ€Alginate Hydrogels for Burn Wound Treatment. Macromolecular Bioscience,<br>2019, 19, e1900123.                                                                                      | 2.1 | 62        |
| 45 | A straightforward method for quantification of vinyl functionalized water soluble alginates via<br>13C-NMR spectroscopy. International Journal of Biological Macromolecules, 2019, 134, 722-729.            | 3.6 | 7         |
| 46 | Technological advancements for the development of stem cell-based models for hepatotoxicity testing. Archives of Toxicology, 2019, 93, 1789-1805.                                                           | 1.9 | 15        |
| 47 | Superabsorbent polymers: A review on the characteristics and applications of synthetic,<br>polysaccharide-based, semi-synthetic and â€~smart' derivatives. European Polymer Journal, 2019, 117,<br>165-178. | 2.6 | 168       |
| 48 | Photo-crosslinkable recombinant collagen mimics for tissue engineering applications. Journal of Materials Chemistry B, 2019, 7, 3100-3108.                                                                  | 2.9 | 31        |
| 49 | Impact of modified gelatin on valvular microtissues. Journal of Tissue Engineering and Regenerative<br>Medicine, 2019, 13, 771-784.                                                                         | 1.3 | 11        |
| 50 | Towards poly(D,L-lactic acid)-based biodegradable and biocompatible polymer optical fiber. , 2019, , .                                                                                                      |     | 0         |
| 51 | Chitosan functionalized poly-ε-caprolactone electrospun fibers and 3D printed scaffolds as<br>antibacterial materials for tissue engineering applications. Carbohydrate Polymers, 2018, 191, 127-135.       | 5.1 | 52        |
| 52 | Endosomal Size and Membrane Leakiness Influence Proton Sponge-Based Rupture of Endosomal<br>Vesicles. ACS Nano, 2018, 12, 2332-2345.                                                                        | 7.3 | 154       |
| 53 | Gene Therapy Approaches Toward Biomedical Breakthroughs. , 2018, , 153-176.                                                                                                                                 |     | 1         |
| 54 | Catalytic carpets: Pt@MIL-101@electrospun PCL, a surprisingly active and robust hydrogenation catalyst. Journal of Catalysis, 2018, 360, 81-88.                                                             | 3.1 | 21        |

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Oil-in-water emulsion impregnated electrospun poly(ethylene terephthalate) fiber mat as a novel tool<br>for optical fiber cleaning. Journal of Colloid and Interface Science, 2018, 520, 64-69.                                | 5.0 | 5         |
| 56 | Heterocellular 3D scaffolds as biomimetic to recapitulate the tumor microenvironment of peritoneal<br>metastases inÂvitro and inÂvivo. Biomaterials, 2018, 158, 95-105.                                                        | 5.7 | 34        |
| 57 | Ulvan-chitosan polyelectrolyte complexes as matrices for enzyme induced biomimetic mineralization.<br>Carbohydrate Polymers, 2018, 182, 254-264.                                                                               | 5.1 | 49        |
| 58 | Singleâ€step solution polymerization of poly(alkylene terephthalate)s: synthesis parameters and polymer characterization. Polymer International, 2018, 67, 292-300.                                                            | 1.6 | 16        |
| 59 | Planar polymer waveguides with a graded-index profile resulting from intermixing of methacrylates in closed microchannels. Optical Materials, 2018, 76, 210-215.                                                               | 1.7 | 2         |
| 60 | Ring opening copolymerisation of lactide and mandelide for the development of environmentally<br>degradable polyesters with controllable glass transition temperatures. Reactive and Functional<br>Polymers, 2018, 128, 16-23. | 2.0 | 8         |
| 61 | Plasma dye coating as straightforward and widely applicable procedure for dye immobilization on polymeric materials. Nature Communications, 2018, 9, 1123.                                                                     | 5.8 | 25        |
| 62 | Clear to clear laser welding for joining thermoplastic polymers: A comparative study based on physicochemical characterization. Journal of Materials Processing Technology, 2018, 255, 808-815.                                | 3.1 | 29        |
| 63 | Localized optical-quality doping of graphene on silicon waveguides through a TFSA-containing polymer matrix. Journal of Materials Chemistry C, 2018, 6, 10739-10750.                                                           | 2.7 | 2         |
| 64 | Joint academic and industrial efforts towards innovative and efficient solutions for clinical needs.<br>Journal of Materials Science: Materials in Medicine, 2018, 29, 129.                                                    | 1.7 | 9         |
| 65 | Increased RNAi Efficacy in Spodoptera exigua via the Formulation of dsRNA With Guanylated Polymers.<br>Frontiers in Physiology, 2018, 9, 316.                                                                                  | 1.3 | 122       |
| 66 | Highly Reactive Thiolâ€Norbornene Photoâ€Click Hydrogels: Toward Improved Processability.<br>Macromolecular Rapid Communications, 2018, 39, e1800181.                                                                          | 2.0 | 77        |
| 67 | Endothelialization and Anticoagulation Potential of Surfaceâ€Modified PET Intended for Vascular<br>Applications. Macromolecular Bioscience, 2018, 18, e1800125.                                                                | 2.1 | 28        |
| 68 | Fabrication of biomimetic placental barrier structures within a microfluidic device utilizing two-photon polymerization. International Journal of Bioprinting, 2018, 4, 144.                                                   | 1.7 | 69        |
| 69 | Composites of gellan gum hydrogel enzymatically mineralized with calcium-zinc phosphate for bone<br>regeneration with antibacterial activity. Journal of Tissue Engineering and Regenerative Medicine,<br>2017, 11, 1610-1618. | 1.3 | 23        |
| 70 | Indirect Rapid Prototyping: Opening Up Unprecedented Opportunities in Scaffold Design and Applications. Annals of Biomedical Engineering, 2017, 45, 58-83.                                                                     | 1.3 | 40        |
| 71 | Enzymatically biomineralized chitosan scaffolds for tissue-engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1500-1513.                                                             | 1.3 | 23        |
| 72 | Gelatin- and starch-based hydrogels. Part B: In vitro mesenchymal stem cell behavior on the hydrogels.<br>Carbohydrate Polymers, 2017, 161, 295-305.                                                                           | 5.1 | 42        |

| #  | Article                                                                                                                                                                                                            | IF                 | CITATIONS     |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|
| 73 | Double positive effect of adding hexaethyelene glycol when optimizing the hybridization efficiency of a microring DNA detection assay. Applied Surface Science, 2017, 405, 321-328.                                | 3.1                | 4             |
| 74 | Acrylate-endcapped polymer precursors: effect of chemical composition on the healing efficiency of active concrete cracks. Smart Materials and Structures, 2017, 26, 055031.                                       | 1.8                | 16            |
| 75 | Novel Poly(Diol Sebacate)s as Additives to Modify Paclitaxel Release From Poly(Lactic-co-Glycolic) Tj ETQq1 1 (                                                                                                    | ).784314 rg<br>1.6 | gBT /Overlock |
| 76 | Intravenous and intratumoral injection of Pluronic P94: The effect of administration route on<br>biodistribution and tumor retention. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13,<br>2179-2188. | 1.7                | 8             |
| 77 | Flexible oligomer spacers as the key to solid-state photopolymerization of hydrogel precursors.<br>Materials Today Chemistry, 2017, 4, 84-89.                                                                      | 1.7                | 17            |
| 78 | RAFT/MADIX polymerization of N-vinylcaprolactam in water–ethanol solvent mixtures. Polymer<br>Chemistry, 2017, 8, 2433-2437.                                                                                       | 1.9                | 16            |
| 79 | Characterization of methacrylated alginate and acrylic monomers as versatile SAPs. Carbohydrate<br>Polymers, 2017, 168, 44-51.                                                                                     | 5.1                | 11            |
| 80 | Characterization of methacrylated polysaccharides in combination with amine-based monomers for application in mortar. Carbohydrate Polymers, 2017, 168, 173-181.                                                   | 5.1                | 16            |
| 81 | Development of amine-based pH-responsive superabsorbent polymers for mortar applications.<br>Construction and Building Materials, 2017, 132, 556-564.                                                              | 3.2                | 23            |
| 82 | Mechanical and self-healing properties of cementitious materials with pH-responsive semi-synthetic superabsorbent polymers. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.                      | 1.3                | 31            |
| 83 | Soft tissue fillers for adipose tissue regeneration: From hydrogel development toward clinical applications. Acta Biomaterialia, 2017, 63, 37-49.                                                                  | 4.1                | 77            |
| 84 | Cell response of flexible PMMA-derivatives: supremacy of surface chemistry over substrate stiffness.<br>Journal of Materials Science: Materials in Medicine, 2017, 28, 183.                                        | 1.7                | 0             |
| 85 | Stability of Pluronic® F127 bismethacrylate hydrogels: Reality or utopia?. Polymer Degradation and Stability, 2017, 146, 201-211.                                                                                  | 2.7                | 23            |
| 86 | Cross-Linkable Gelatins with Superior Mechanical Properties Through Carboxylic Acid Modification:<br>Increasing the Two-Photon Polymerization Potential. Biomacromolecules, 2017, 18, 3260-3272.                   | 2.6                | 104           |
| 87 | Molecularly imprinted polymers immobilized on 3D printed scaffolds as novel solid phase extraction sorbent for metergoline. Analytica Chimica Acta, 2017, 986, 57-70.                                              | 2.6                | 28            |
| 88 | Aqueous electrospinning of poly(2-ethyl-2-oxazoline): Mapping the parameter space. European Polymer<br>Journal, 2017, 88, 724-732.                                                                                 | 2.6                | 22            |
| 89 | Combinatory approach of methacrylated alginate and acid monomers for concrete applications.<br>Carbohydrate Polymers, 2017, 155, 448-455.                                                                          | 5.1                | 27            |
| 90 | Crack Mitigation in Concrete: Superabsorbent Polymers as Key to Success?. Materials, 2017, 10, 237.                                                                                                                | 1.3                | 113           |

| #   | Article                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Cell Regeneration: Current Knowledge and Evolutions. , 2016, , 15-63.                                                                                                                                                                                              |     | 1         |
| 92  | Gelatin- and starch-based hydrogels. Part A: Hydrogel development, characterization and coating.<br>Carbohydrate Polymers, 2016, 152, 129-139.                                                                                                                     | 5.1 | 81        |
| 93  | Biopolymers as Novel Tool for Self-Sealing and Self-Healing of Mortar. Materials Research Society<br>Symposia Proceedings, 2016, 1813, 1.                                                                                                                          | 0.1 | Ο         |
| 94  | Di-Calcium Phosphate and Phytosphingosine as an Innovative Acid-Resistant Treatment to Occlude<br>Dentine Tubules. Caries Research, 2016, 50, 303-309.                                                                                                             | 0.9 | 12        |
| 95  | Role of the surface chemistry of the adsorbent on the initialization step of the water sorption process. Carbon, 2016, 106, 284-288.                                                                                                                               | 5.4 | 28        |
| 96  | Evaluation and validation of the use of a molecularly imprinted polymer coupled to LC–MS for<br>benzylpenicillin determination in meat samples. Journal of Chromatography B: Analytical Technologies<br>in the Biomedical and Life Sciences, 2016, 1025, 48-56.    | 1.2 | 15        |
| 97  | Poly(polyol sebacate) Elastomers as Coatings for Metallic Coronary Stents. Macromolecular<br>Bioscience, 2016, 16, 1678-1692.                                                                                                                                      | 2.1 | 4         |
| 98  | Indirect Solid Freeform Fabrication of an Initiatorâ€Free Photocrosslinkable Hydrogel Precursor for the Creation of Porous Scaffolds. Macromolecular Bioscience, 2016, 16, 1883-1894.                                                                              | 2.1 | 16        |
| 99  | Optical-quality controllable wet-chemical doping of graphene through a uniform, transparent and low-roughness F4-TCNQ/MEK layer. RSC Advances, 2016, 6, 104491-104501.                                                                                             | 1.7 | 10        |
| 100 | Deep proton writing with 12ÂMeV protons for rapid prototyping of microstructures in polymethylmethacrylate. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2016, 15, 044501.                                                                                  | 1.0 | 3         |
| 101 | Generation of composites for bone tissue-engineering applications consisting of gellan gum<br>hydrogels mineralized with calcium and magnesium phosphate phases by enzymatic means. Journal of<br>Tissue Engineering and Regenerative Medicine, 2016, 10, 938-954. | 1.3 | 47        |
| 102 | A Computational Framework to Model Degradation of Biocorrodible Metal Stents Using an Implicit<br>Finite Element Solver. Annals of Biomedical Engineering, 2016, 44, 382-390.                                                                                      | 1.3 | 17        |
| 103 | Polydopamine–Gelatin as Universal Cell-Interactive Coating for Methacrylate-Based Medical Device<br>Packaging Materials: When Surface Chemistry Overrules Substrate Bulk Properties.<br>Biomacromolecules, 2016, 17, 56-68.                                        | 2.6 | 21        |
| 104 | Characterization of MIP and MIP functionalized surfaces: Current state-of-the-art. TrAC - Trends in Analytical Chemistry, 2016, 76, 71-85.                                                                                                                         | 5.8 | 48        |
| 105 | Adhesion improvement at the PMMA bone cement-titanium implant interface using methyl methacrylate atmospheric pressure plasma polymerization. Surface and Coatings Technology, 2016, 294, 201-209.                                                                 | 2.2 | 24        |
| 106 | Alginate biopolymers: Counteracting the impact of superabsorbent polymers on mortar strength.<br>Construction and Building Materials, 2016, 110, 169-174.                                                                                                          | 3.2 | 86        |
| 107 | Cross-linkable polyethers as healing/sealing agents for self-healing of cementitious materials.<br>Materials and Design, 2016, 98, 215-222.                                                                                                                        | 3.3 | 45        |
| 108 | SPECT/CT Imaging of Pluronic Nanocarriers with Varying Poly(ethylene oxide) Block Length and Aggregation State. Molecular Pharmaceutics, 2016, 13, 1158-1165.                                                                                                      | 2.3 | 19        |

| #   | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Interactions of Pluronic nanocarriers with 2D and 3D cell cultures: Effects of PEO block length and aggregation state. Journal of Controlled Release, 2016, 224, 126-135.                                                    | 4.8 | 32        |
| 110 | New antimicrobial chitosan derivatives for wound dressing applications. Carbohydrate Polymers, 2016, 141, 28-40.                                                                                                             | 5.1 | 143       |
| 111 | Fabrication of 3-dimensional biodegradable microfluidic environments for tissue engineering applications. Materials and Design, 2016, 89, 1315-1324.                                                                         | 3.3 | 14        |
| 112 | Paper No S5.3: Importance of Alignment Layers in Blue Phase Liquid Crystal Devices. Digest of Technical<br>Papers SID International Symposium, 2015, 46, 23-23.                                                              | 0.1 | 0         |
| 113 | Development and Characterization of Novel Films Based on Sulfonamide-Chitosan Derivatives for<br>Potential Wound Dressing. International Journal of Molecular Sciences, 2015, 16, 29843-29855.                               | 1.8 | 16        |
| 114 | Multifactorial Optimization of Contrast-Enhanced Nanofocus Computed Tomography for<br>Quantitative Analysis of Neo-Tissue Formation in Tissue Engineering Constructs. PLoS ONE, 2015, 10,<br>e0130227.                       | 1.1 | 10        |
| 115 | Pulsed laser deposition of magnesium-doped calcium phosphate coatings on porous polycaprolactone scaffolds produced by rapid prototyping. Materials Letters, 2015, 148, 178-183.                                             | 1.3 | 23        |
| 116 | Hybrid Tissue Engineering Scaffolds by Combination of Three-Dimensional Printing and Cell<br>Photoencapsulation. Journal of Nanotechnology in Engineering and Medicine, 2015, 6, 0210011-210017.                             | 0.8 | 59        |
| 117 | Biofunctionalization of poly(l-lactide-co-glycolide) by post-plasma grafting of 2-aminoethyl methacrylate and gelatin immobilization. Materials Letters, 2015, 139, 344-347.                                                 | 1.3 | 6         |
| 118 | Collagenâ€lactoferrin fibrillar coatings enhance osteoblast proliferation and differentiation. Journal of Biomedical Materials Research - Part A, 2015, 103, 525-533.                                                        | 2.1 | 22        |
| 119 | Photo-crosslinkable biopolymers targeting stem cell adhesion and proliferation: the case study of gelatin and starch-based IPNs. Journal of Materials Science: Materials in Medicine, 2015, 26, 104.                         | 1.7 | 12        |
| 120 | A Cardiovascular Occlusion Method Based on the Use of a Smart Hydrogel. IEEE Transactions on<br>Biomedical Engineering, 2015, 62, 399-406.                                                                                   | 2.5 | 4         |
| 121 | First step toward near-infrared continuous glucose monitoring: <i>inÂvivo</i> evaluation of antibody coupled biomaterials. Experimental Biology and Medicine, 2015, 240, 446-457.                                            | 1.1 | 10        |
| 122 | Cryogel-PCL combination scaffolds for bone tissue repair. Journal of Materials Science: Materials in<br>Medicine, 2015, 26, 123.                                                                                             | 1.7 | 31        |
| 123 | Biomimetic Magnetic Silk Scaffolds. ACS Applied Materials & amp; Interfaces, 2015, 7, 6282-6292.                                                                                                                             | 4.0 | 52        |
| 124 | Cross-linkable alginate-graft-gelatin copolymers for tissue engineering applications. European<br>Polymer Journal, 2015, 72, 494-506.                                                                                        | 2.6 | 54        |
| 125 | pH-responsive superabsorbent polymers: A pathway to self-healing of mortar. Reactive and Functional Polymers, 2015, 93, 68-76.                                                                                               | 2.0 | 87        |
| 126 | Development, optimization and biological evaluation of chitosan scaffold formulations of new xanthine derivatives for treatment of type-2 diabetes mellitus. European Journal of Pharmaceutical Sciences, 2015, 77, 122-134. | 1.9 | 25        |

PETER DUBRUEL

| #   | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Bio-inspired surface modification of PET for cardiovascular applications: Case study of gelatin.<br>Colloids and Surfaces B: Biointerfaces, 2015, 134, 113-121.                                                                 | 2.5 | 23        |
| 128 | Thermoresponsive polymer coated gold nanoparticles: from MADIX/RAFT copolymerization of N-vinylpyrrolidone and N-vinylcaprolactam to salt and temperature induced nanoparticle aggregation. RSC Advances, 2015, 5, 42388-42398. | 1.7 | 24        |
| 129 | On the effect of alignment layers on blue phase liquid crystals. Applied Physics Letters, 2015, 106, 101105.                                                                                                                    | 1.5 | 12        |
| 130 | A finite element strategy to investigate the free expansion behaviour of a biodegradable polymeric stent. Journal of Biomechanics, 2015, 48, 2012-2018.                                                                         | 0.9 | 50        |
| 131 | An electro-responsive hydrogel for intravascular applications: an in vitro and in vivo evaluation.<br>Journal of Materials Science: Materials in Medicine, 2015, 26, 264.                                                       | 1.7 | 9         |
| 132 | Long Term Stability of Polymer Stabilized Blue Phase Liquid Crystals. Journal of Display Technology, 2015, 11, 703-708.                                                                                                         | 1.3 | 2         |
| 133 | Surface modification of an epoxy resin with polyamines and polydopamine: Adhesion toward electroless deposited copper. Applied Surface Science, 2015, 353, 238-244.                                                             | 3.1 | 29        |
| 134 | Indirect additive manufacturing as an elegant tool for the production of self-supporting low density gelatin scaffolds. Journal of Materials Science: Materials in Medicine, 2015, 26, 247.                                     | 1.7 | 38        |
| 135 | pH-sensitive superabsorbent polymers: a potential candidate material for self-healing concrete.<br>Journal of Materials Science, 2015, 50, 970-979.                                                                             | 1.7 | 117       |
| 136 | High Throughput Micro-Well Generation of Hepatocyte Micro-Aggregates for Tissue Engineering. PLoS<br>ONE, 2014, 9, e105171.                                                                                                     | 1.1 | 44        |
| 137 | Cationic Polymers as Gene-Activated Matrices for Biomedical Applications. RSC Polymer Chemistry Series, 2014, , 438-462.                                                                                                        | 0.1 | 0         |
| 138 | Cationic Polymers as Carriers through the Blood–Brain Barrier. RSC Polymer Chemistry Series, 2014, ,<br>539-556.                                                                                                                | 0.1 | 2         |
| 139 | Gelatin-Based Hydrogels Promote Chondrogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells In Vitro. Materials, 2014, 7, 1342-1359.                                                                    | 1.3 | 68        |
| 140 | Improved performance of highly multiplexed silicion-on-insulator microring sensor chips by surface structure implementation. , 2014, , .                                                                                        |     | 0         |
| 141 | Curing kinetics of step-index and graded-index single mode polymer self-written waveguides. Optical<br>Materials Express, 2014, 4, 1324.                                                                                        | 1.6 | 16        |
| 142 | Properties of electrically responsive hydrogels as a potential dynamic tool for biomedical applications. Journal of Applied Polymer Science, 2014, 131, .                                                                       | 1.3 | 18        |
| 143 | Laser Photofabrication of Cell-Containing Hydrogel Constructs. Langmuir, 2014, 30, 3787-3794.                                                                                                                                   | 1.6 | 159       |
| 144 | Surface modification of an epoxy resin with polyamines and polydopamine: The effect on the initial electroless copper deposition. Applied Surface Science, 2014, 305, 321-329.                                                  | 3.1 | 8         |

| #   | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Surface characterization and stability of an epoxy resin surface modified with polyamines grafted on polydopamine. Applied Surface Science, 2014, 303, 465-472.                                                               | 3.1 | 41        |
| 146 | Actuation of a novel Pluronic-based hydrogel: Electromechanical response and the role of applied current. Sensors and Actuators B: Chemical, 2014, 191, 650-658.                                                              | 4.0 | 18        |
| 147 | Enrichment of chitosan hydrogels with perfluorodecalin promotes gelation and stem cell vitality.<br>Materials Letters, 2014, 128, 79-84.                                                                                      | 1.3 | 17        |
| 148 | Enzymatic Mineralization of Silk Scaffolds. Macromolecular Bioscience, 2014, 14, 991-1003.                                                                                                                                    | 2.1 | 30        |
| 149 | The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials, 2014, 35, 49-62.                                                                                    | 5.7 | 837       |
| 150 | Galactoseâ€ <scp>F</scp> unctionalized Gelatin Hydrogels Improve the Functionality of Encapsulated<br>Hepg2 Cells. Macromolecular Bioscience, 2014, 14, 419-427.                                                              | 2.1 | 19        |
| 151 | One-pot synthesis of superabsorbent hybrid hydrogels based on methacrylamide gelatin and polyacrylamide. Effortless control of hydrogel properties through composition design. New Journal of Chemistry, 2014, 38, 3112-3126. | 1.4 | 56        |
| 152 | Electro-actuation of biocompatible Pluronic/methacrylic acid hydrogel in blood-plasma and in blood-mimicking buffers. RSC Advances, 2014, 4, 1890-1894.                                                                       | 1.7 | 6         |
| 153 | Development and Evaluation of a Molecularly Imprinted Polymer for the Detection and Cleanup of Benzylpenicillin in Milk. Journal of Agricultural and Food Chemistry, 2014, 62, 8814-8821.                                     | 2.4 | 18        |
| 154 | Self-healing cementitious materials by the combination of microfibres and superabsorbent polymers.<br>Journal of Intelligent Material Systems and Structures, 2014, 25, 13-24.                                                | 1.4 | 335       |
| 155 | Composites of polyvinyl alcohol (PVA) hydrogel and calcium and magnesium phosphate formed by enzymatic functionalization. Materials Letters, 2014, 137, 62-67.                                                                | 1.3 | 10        |
| 156 | Surface Analysis of Titanium Cleaning and Activation Processes: Non-thermal Plasma Versus Other<br>Techniques. Plasma Chemistry and Plasma Processing, 2014, 34, 917-932.                                                     | 1.1 | 29        |
| 157 | The Role of Scaffold Architecture and Composition on the Bone Formation by Adipose-Derived Stem<br>Cells. Tissue Engineering - Part A, 2014, 20, 434-444.                                                                     | 1.6 | 36        |
| 158 | Immunocompatibility evaluation of hydrogelâ€coated polyimide implants for applications in<br>regenerative medicine. Journal of Biomedical Materials Research - Part A, 2014, 102, 1982-1990.                                  | 2.1 | 32        |
| 159 | Protein Functionalization Revised: <i>N</i> â€ <i>tert</i> â€butoxycarbonylation as an Elegant Tool to<br>Circumvent Protein Crosslinking. Macromolecular Rapid Communications, 2014, 35, 1351-1355.                          | 2.0 | 7         |
| 160 | Injectable self-gelling composites for bone tissue engineering based on gellan gum hydrogel enriched<br>with different bioglasses. Biomedical Materials (Bristol), 2014, 9, 045014.                                           | 1.7 | 56        |
| 161 | Biofunctionalization of Ulvan Scaffolds for Bone Tissue Engineering. ACS Applied Materials &<br>Interfaces, 2014, 6, 3211-3218.                                                                                               | 4.0 | 92        |
| 162 | Plasma surface modification of polylactic acid to promote interaction with fibroblasts. Journal of Materials Science: Materials in Medicine, 2013, 24, 469-478.                                                               | 1.7 | 89        |

| #   | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Magnesium-enhanced enzymatically mineralized platelet-rich fibrin for bone regeneration applications. Biomedical Materials (Bristol), 2013, 8, 055001.                                                                                                      | 1.7 | 17        |
| 164 | Acceleration of gelation and promotion of mineralization of chitosan hydrogels by alkaline phosphatase. International Journal of Biological Macromolecules, 2013, 56, 122-132.                                                                              | 3.6 | 39        |
| 165 | In vitro cell-biological performance and structural characterization of selective laser sintered and plasma surface functionalized polycaprolactone scaffolds for bone regeneration. Materials Science and Engineering C, 2013, 33, 3404-3412.              | 3.8 | 40        |
| 166 | Synergistic effect of surface modification and scaffold design of bioplotted 3-D poly-ε-caprolactone<br>scaffolds in osteogenic tissue engineering. Acta Biomaterialia, 2013, 9, 7699-7708.                                                                 | 4.1 | 59        |
| 167 | Silicon-on-insulator microring resonators for photonic biosensing applications. , 2013, , .                                                                                                                                                                 |     | 2         |
| 168 | Ultrasound stimulus to enhance the bone regeneration capability of gelatin cryogels. , 2013, 2013, 846-9.                                                                                                                                                   |     | 1         |
| 169 | Improved cell adhesion to flat and porous plasma-treated poly-ε-caprolactone samples. Surface and<br>Coatings Technology, 2013, 232, 447-455.                                                                                                               | 2.2 | 31        |
| 170 | Exploring the Future of Hydrogels in Rapid Prototyping: A Review on Current Trends and Limitations.<br>Springer Series in Biomaterials Science and Engineering, 2013, , 201-249.                                                                            | 0.7 | 1         |
| 171 | Enhanced cell–material interactions on mediumâ€pressure plasmaâ€treated<br>polyhydroxybutyrate/polyhydroxyvalerate. Journal of Biomedical Materials Research - Part A, 2013,<br>101A, 1778-1786.                                                            | 2.1 | 14        |
| 172 | Quantitative Contrasts in the Photopolymerization of Acrylamide and<br>Methacrylamideâ€ <scp>F</scp> unctionalized Gelatin Hydrogel Building Blocks. Macromolecular<br>Bioscience, 2013, 13, 1531-1545.                                                     | 2.1 | 54        |
| 173 | The effect of a photopolymerizable poly(ε-caprolactone-co-glycolide) matrix on the cement reactions<br>of tetracalcium phosphate and tetracalcium phosphate–monocalcium phosphate monohydrate<br>mixtures. Journal of Materials Chemistry B, 2013, 1, 1584. | 2.9 | 1         |
| 174 | Influence of physical properties of cuvette surface on measurement of serum lipase. Clinical Chemistry and Laboratory Medicine, 2013, 51, 2109-2114.                                                                                                        | 1.4 | 4         |
| 175 | A case of successful interaction between cells derived from human ovarian follicular liquid and gelatin cryogel for biotech and medical applications. , 2013, 2013, 6240-3.                                                                                 |     | 2         |
| 176 | Finite Element Modeling of Biodegradable Stents. , 2013, , .                                                                                                                                                                                                |     | 0         |
| 177 | Implantable (Bio)Polymer Coated Titanium Scaffolds: A Review. Current Pharmaceutical Design, 2012,<br>18, 2576-2590.                                                                                                                                        | 0.9 | 23        |
| 178 | The Effect of Medium Pressure Plasma Treatment on Thin Poly- <i>Ϊμ</i> -Caprolactone Layers. Journal of<br>Adhesion Science and Technology, 2012, 26, 2239-2249.                                                                                            | 1.4 | 3         |
| 179 | Modeling of Coated Biodegradable Stents. , 2012, , .                                                                                                                                                                                                        |     | 0         |
| 180 | Plasma Surface Modification of Biomedical Polymers: Influence on Cell-Material Interaction. Plasma<br>Chemistry and Plasma Processing, 2012, 32, 1039-1073.                                                                                                 | 1.1 | 206       |

PETER DUBRUEL

| #   | Article                                                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Engineered (hep/pARG) <sub>2</sub> polyelectrolyte capsules for sustained release of bioactive TGF-β1.<br>Soft Matter, 2012, 8, 1146-1154.                                                                                                    | 1.2  | 23        |
| 182 | Development of Suspension Polymerized Molecularly Imprinted Beads with Metergoline as Template<br>and Application in a Solid-Phase Extraction Procedure toward Ergot Alkaloids. Analytical Chemistry,<br>2012, 84, 10411-10418.               | 3.2  | 67        |
| 183 | Cationic polymers and their therapeutic potential. Chemical Society Reviews, 2012, 41, 7147.                                                                                                                                                  | 18.7 | 588       |
| 184 | Development and validation of a new LC–MS/MS method for the simultaneous determination of six<br>major ergot alkaloids and their corresponding epimers. Application to some food and feed<br>commodities. Food Chemistry, 2012, 135, 292-303. | 4.2  | 92        |
| 185 | Adsorption of cobalt (II) 5,10,15,20-tetrakis(2-aminophenyl)-porphyrin onto copper substrates:<br>Characterization and impedance studies for corrosion inhibition. Corrosion Science, 2012, 62, 73-82.                                        | 3.0  | 42        |
| 186 | Novel gelatin–PHEMA porous scaffolds for tissue engineering applications. Soft Matter, 2012, 8, 9589.                                                                                                                                         | 1.2  | 82        |
| 187 | Generation of hESC-derived retinal pigment epithelium on biopolymer coated polyimide membranes.<br>Biomaterials, 2012, 33, 8047-8054.                                                                                                         | 5.7  | 71        |
| 188 | Engineered 3D microporous gelatin scaffolds to study cell migration. Chemical Communications, 2012, 48, 3512.                                                                                                                                 | 2.2  | 20        |
| 189 | Surface Modification of a Photo-Definable Epoxy Resin with Polydopamine to Improve Adhesion with Electroless Deposited Copper. Journal of Adhesion Science and Technology, 2012, 26, 2301-2314.                                               | 1.4  | 24        |
| 190 | Aptamer-Based Molecular Recognition of Lysergamine, Metergoline and Small Ergot Alkaloids.<br>International Journal of Molecular Sciences, 2012, 13, 17138-17159.                                                                             | 1.8  | 19        |
| 191 | Plasma surface treatment of biomedical polymers to improve cell adhesion. , 2012, , .                                                                                                                                                         |      | 2         |
| 192 | Role of radicals in UVâ€initiated postplasma grafting of polyâ€îµâ€€aprolactone: An electron paramagnetic<br>resonance study. Journal of Polymer Science Part A, 2012, 50, 2142-2149.                                                         | 2.5  | 1         |
| 193 | Enzymatic Mineralization of Hydrogels for Bone Tissue Engineering by Incorporation of Alkaline<br>Phosphatase. Macromolecular Bioscience, 2012, 12, 1077-1089.                                                                                | 2.1  | 75        |
| 194 | Radiolabeled gelatin type B analogues can be used for non-invasive visualisation and quantification of<br>protein coatings on 3D porous implants. Journal of Materials Science: Materials in Medicine, 2012, 23,<br>1961-1969.                | 1.7  | 4         |
| 195 | Electrochemical determination of hydrogen peroxide with cytochrome c peroxidase and horse heart cytochrome c entrapped in a gelatin hydrogel. Bioelectrochemistry, 2012, 83, 15-18.                                                           | 2.4  | 41        |
| 196 | A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials, 2012, 33, 6020-6041.                                                                                                                   | 5.7  | 1,086     |
| 197 | Double protein functionalized poly-ε-caprolactone surfaces: in depth ToF–SIMS and XPS characterization. Journal of Materials Science: Materials in Medicine, 2012, 23, 293-305.                                                               | 1.7  | 15        |
| 198 | Immobilization of Pseudorabies Virus in Porcine Tracheal Respiratory Mucus Revealed by Single<br>Particle Tracking. PLoS ONE, 2012, 7, e51054.                                                                                                | 1.1  | 48        |

| #   | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Development of Mechanically Tailored Gelatinâ€Chondroitin Sulphate Hydrogel Films. Macromolecular<br>Symposia, 2011, 309-310, 173-181.                                                                                            | 0.4 | 10        |
| 200 | Influence of polymer hydrolysis on adjuvant effect of Gantrez®AN nanoparticles: Implications for oral vaccination. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 79, 392-398.                                     | 2.0 | 9         |
| 201 | Plasma modification of PET foils with different crystallinity. Surface and Coatings Technology, 2011, 205, S511-S515.                                                                                                             | 2.2 | 34        |
| 202 | Plasma treatment of polycaprolactone at medium pressure. Surface and Coatings Technology, 2011, 205, S543-S547.                                                                                                                   | 2.2 | 57        |
| 203 | Ultrathin Optoelectronic Device Packaging in Flexible Carriers. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17, 617-628.                                                                                        | 1.9 | 44        |
| 204 | Laser Fabrication of Three-Dimensional CAD Scaffolds from Photosensitive Gelatin for Applications in Tissue Engineering. Biomacromolecules, 2011, 12, 851-858.                                                                    | 2.6 | 273       |
| 205 | Static secondary ion mass spectrometry for the surface characterisation of individual nanofibres of polycaprolactone functionalised with an antibacterial additive. Analytical and Bioanalytical Chemistry, 2011, 399, 1163-1172. | 1.9 | 11        |
| 206 | Mucosal irritation potential of polyelectrolyte multilayer capsules. Biomaterials, 2011, 32, 1967-1977.                                                                                                                           | 5.7 | 32        |
| 207 | Chip-based impedance measurement on single cells for monitoring sub-toxic effects on cell membranes. Biosensors and Bioelectronics, 2011, 26, 3405-3412.                                                                          | 5.3 | 21        |
| 208 | Plasma Surface Modification of Biodegradable Polymers: A Review. Plasma Processes and Polymers, 2011, 8, 171-190.                                                                                                                 | 1.6 | 340       |
| 209 | Implantation of ultrathin, biofunctionalized polyimide membranes into the subretinal space of rats.<br>Biomaterials, 2011, 32, 3890-3898.                                                                                         | 5.7 | 35        |
| 210 | Design of an imprinted clean-up method for mycophenolic acid in maize. Journal of Chromatography A,<br>2011, 1218, 1122-1130.                                                                                                     | 1.8 | 10        |
| 211 | Reversible gelatin-based hydrogels: Finetuning of material properties. European Polymer Journal, 2011, 47, 1039-1047.                                                                                                             | 2.6 | 82        |
| 212 | Comparative Study of Collagen and Gelatin Coatings on Titanium Surfaces. Macromolecular Symposia,<br>2011, 309-310, 190-198.                                                                                                      | 0.4 | 5         |
| 213 | Visualization of the Penetration Depth of Plasma in Three-Dimensional Porous PCL Scaffolds. IEEE<br>Transactions on Plasma Science, 2011, 39, 2792-2793.                                                                          | 0.6 | 9         |
| 214 | Photonic crystal fiber Bragg grating based sensors: opportunities for applications in healthcare.<br>Proceedings of SPIE, 2011, , .                                                                                               | 0.8 | 5         |
| 215 | Laser Fabrication of 3D Gelatin Scaffolds for the Generation of Bioartificial Tissues. Materials, 2011, 4, 288-299.                                                                                                               | 1.3 | 130       |
| 216 | Gelatin Functionalization of Biomaterial Surfaces: Strategies for Immobilization and Visualization.<br>Polymers, 2011, 3, 114-130.                                                                                                | 2.0 | 42        |

| #   | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 217 | Photonic crystal fiber Bragg grating based sensors $\hat{a} \in ``$ opportunities for applications in healthcare. , 2011, , .                                                                                                                          |      | 1         |
| 218 | Recent advances in recognition elements of food and environmental biosensors: A review. Biosensors and Bioelectronics, 2010, 26, 1178-1194.                                                                                                            | 5.3  | 268       |
| 219 | Eco-, geno- and human toxicology of bio-active nanoparticles for biomedical applications. Toxicology, 2010, 269, 170-181.                                                                                                                              | 2.0  | 43        |
| 220 | Postâ€Plasma Grafting of AEMA as a Versatile Tool to Biofunctionalise Polyesters for Tissue<br>Engineering. Macromolecular Bioscience, 2010, 10, 1484-1494.                                                                                            | 2.1  | 43        |
| 221 | Surface modification of an epoxy resin with polyamines via cyanuric chloride coupling. Applied Surface Science, 2010, 256, 6269-6278.                                                                                                                  | 3.1  | 23        |
| 222 | Stability study of polyacrylic acid films plasma-polymerized on polypropylene substrates at medium pressure. Applied Surface Science, 2010, 257, 372-380.                                                                                              | 3.1  | 39        |
| 223 | Synthesis and application of a T-2 toxin imprinted polymer. Journal of Chromatography A, 2010, 1217, 2879-2886.                                                                                                                                        | 1.8  | 34        |
| 224 | An impaired alveolar-capillary barrier in vitro : effect of proinflammatory cytokines and consequences on nanocarrier interaction. Journal of the Royal Society Interface, 2010, 7, S41-54.                                                            | 1.5  | 62        |
| 225 | Hydrogel Network Formation Revised: High-Resolution Magic Angle Spinning Nuclear Magnetic<br>Resonance as a Powerful Tool for Measuring Absolute Hydrogel Cross-Link Efficiencies. Applied<br>Spectroscopy, 2010, 64, 1176-1180.                       | 1.2  | 43        |
| 226 | Electrochemical study of gelatin as a matrix for the immobilization of horse heart cytochrome c.<br>Talanta, 2010, 82, 1980-1985.                                                                                                                      | 2.9  | 28        |
| 227 | Use of a gelatin cryogel as biomaterial scaffold in the differentiation process of human bone marrow stromal cells. , 2010, 2010, 247-50.                                                                                                              |      | 19        |
| 228 | An array waveguide sensor for artificial optical skins. Proceedings of SPIE, 2009, , .                                                                                                                                                                 | 0.8  | 9         |
| 229 | A New Approach for Adipose Tissue Regeneration Based on Human Mesenchymal Stem Cells in Contact<br>to Hydrogels—an In Vitro Study. Advanced Engineering Materials, 2009, 11, B155.                                                                     | 1.6  | 22        |
| 230 | pHâ€Responsive Flowerâ€Type Micelles Formed by a Biotinylated<br>Poly(2â€vinylpyridine)â€ <i>block</i> â€poly(ethylene oxide)â€ <i>block</i> â€poly( <i>ε</i> â€caprolactone) Triblo<br>Copolymer. Advanced Functional Materials, 2009, 19, 1416-1425. | ock8 | 45        |
| 231 | Affinity Study of Novel Gelatin Cell Carriers for Fibronectin. Macromolecular Bioscience, 2009, 9, 1105-1115.                                                                                                                                          | 2.1  | 38        |
| 232 | Deposition of Polyacrylic Acid Films by Means of an Atmospheric Pressure Dielectric Barrier<br>Discharge. Plasma Chemistry and Plasma Processing, 2009, 29, 103-117.                                                                                   | 1.1  | 46        |
| 233 | Surface characterization of a crossâ€linked cytochrome <i>c</i> film on cysteamineâ€modified gold<br>electrodes. Surface and Interface Analysis, 2009, 41, 389-393.                                                                                    | 0.8  | 4         |
| 234 | Plasmaâ€Polymerization of HMDSO Using an Atmospheric Pressure Dielectric Barrier Discharge. Plasma<br>Processes and Polymers, 2009, 6, S537.                                                                                                           | 1.6  | 67        |

| #   | Article                                                                                                                                                                                    | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Organic–inorganic behaviour of HMDSO films plasma-polymerized at atmospheric pressure. Surface<br>and Coatings Technology, 2009, 203, 1366-1372.                                           | 2.2 | 112       |
| 236 | Nonthermal Plasma Technology as a Versatile Strategy for Polymeric Biomaterials Surface<br>Modification: A Review. Biomacromolecules, 2009, 10, 2351-2378.                                 | 2.6 | 599       |
| 237 | Metal Grating Patterning on Fiber Facets by UV-Based Nano Imprint and Transfer Lithography Using<br>Optical Alignment. Journal of Lightwave Technology, 2009, 27, 1415-1420.               | 2.7 | 41        |
| 238 | Ozonization and Cyclic Voltammetry as Efficient Methods for the Regeneration of Gelatinâ€Coated SPR<br>Chips. Macromolecular Bioscience, 2008, 8, 1090-1097.                               | 2.1 | 5         |
| 239 | Quantitative Screening of Engineered Implants in a Long Bone Defect Model in Rabbits. Tissue<br>Engineering - Part C: Methods, 2008, 14, 251-260.                                          | 1.1 | 25        |
| 240 | Porous Gelatin Hydrogels:Â 1. Cryogenic Formation and Structure Analysis. Biomacromolecules, 2007,<br>8, 331-337.                                                                          | 2.6 | 185       |
| 241 | Porous Gelatin Hydrogels:Â 2. In Vitro Cell Interaction Study. Biomacromolecules, 2007, 8, 338-344.                                                                                        | 2.6 | 158       |
| 242 | Surface plasmon resonance as an elegant technique to study polyplex–GAG interactions. Journal of<br>Controlled Release, 2006, 116, e77-e79.                                                | 4.8 | 1         |
| 243 | Vinyl Polymers as Non-Viral Gene Delivery Carriers: Current Status and Prospects. Macromolecular<br>Bioscience, 2006, 6, 789-810.                                                          | 2.1 | 69        |
| 244 | Enhancement of polymethacrylate-mediated gene delivery by Penetratin. European Journal of<br>Pharmaceutical Sciences, 2005, 24, 525-537.                                                   | 1.9 | 31        |
| 245 | Electrografting of Poly(ethylene glycol) Acrylate: A One-Step Strategy for the Synthesis of<br>Protein-Repellent Surfaces. Angewandte Chemie - International Edition, 2005, 44, 5505-5509. | 7.2 | 41        |
| 246 | Surface Plasmon Resonance Spectroscopy as a Tool to Study Polyplex-Glycoaminoglycan Interactions.<br>Macromolecular Rapid Communications, 2005, 26, 992-997.                               | 2.0 | 7         |
| 247 | Dendritic Poly-[N-(2-Hydroxyethyl)-L-Glutamine] as Potential Drug Carrier. Journal of Bioactive and<br>Compatible Polymers, 2004, 19, 367-382.                                             | 0.8 | 6         |
| 248 | Buffering Properties of Cationic Polymethacrylates Are Not the Only Key to Successful Gene Delivery.<br>Biomacromolecules, 2004, 5, 379-388.                                               | 2.6 | 57        |
| 249 | Physicochemical and biological evaluation of cationic polymethacrylates as vectors for gene delivery. European Journal of Pharmaceutical Sciences, 2003, 18, 211-220.                      | 1.9 | 63        |
| 250 | Poly-l-glutamic Acid Derivatives as Multifunctional Vectors for Gene Delivery. Part A. Synthesis and<br>Physicochemical Evaluation. Biomacromolecules, 2003, 4, 1168-1176.                 | 2.6 | 30        |
| 251 | Poly-l-glutamic Acid Derivatives as Multifunctional Vectors for Gene Delivery. Part B. Biological<br>Evaluation. Biomacromolecules, 2003, 4, 1177-1183.                                    | 2.6 | 29        |
| 252 | Synthetic polyamines as vectors for gene delivery. Polymer International, 2002, 51, 948-957.                                                                                               | 1.6 | 21        |

| #   | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Poly-l-glutamic acid derivatives as vectors for gene therapy. Journal of Controlled Release, 2000, 65, 187-202.                                                                                                                                 | 4.8 | 133       |
| 254 | Effect of Polyethylene Oxide Blocks or Grafts on the Physicochemical Properties of<br>Poly(2-N-(Dimethylaminoethyl) Methacrylate) DNA Complexes. Journal of Bioactive and Compatible<br>Polymers, 2000, 15, 279-296.                            | 0.8 | 14        |
| 255 | pH Sensitive Vinyl Copolymers as Vectors for Gene Therapy. Journal of Bioactive and Compatible Polymers, 2000, 15, 191-213.                                                                                                                     | 0.8 | 13        |
| 256 | Effect of Polyethylene Oxide Blocks or Grafts on the Physicochemical Properties of<br>Poly(2-N-(dimethylaminoethyl) methacrylate) DNA Complexes. Journal of Bioactive and Compatible<br>Polymers, 2000, 15, 279-296.                            | 0.8 | 11        |
| 257 | pH Sensitive Vinyl Copolymers as Vectors for Gene Therapy. Journal of Bioactive and Compatible<br>Polymers, 2000, 15, 191-213.                                                                                                                  | 0.8 | 4         |
| 258 | Use of cell cultures in vitro to assess the uptake of long dsRNA in plant cells. In Vitro Cellular and<br>Developmental Biology - Plant, 0, , 1.                                                                                                | 0.9 | 2         |
| 259 | Melt Electrowriting of a Photoâ€Crosslinkable Poly( <i>ε</i> aprolactone)â€Based Material into Tubular<br>Constructs with Predefined Architecture and Tunable Mechanical Properties. Macromolecular<br>Materials and Engineering, 0, , 2200097. | 1.7 | 6         |