

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5233179/publications.pdf Version: 2024-02-01

		29994	33814
147	10,939	54	99
papers	citations	h-index	g-index
170	170	170	0176
1/3	1/3	1/3	9176
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Polymer blends and composites from renewable resources. Progress in Polymer Science, 2006, 31, 576-602.	11.8	1,666
2	Thermal processing of starch-based polymers. Progress in Polymer Science, 2009, 34, 1348-1368.	11.8	639
3	An overview of degradable and biodegradable polyolefins. Progress in Polymer Science, 2011, 36, 1015-1049.	11.8	404
4	Preparation and characterization of slow-release fertilizer encapsulated by starch-based superabsorbent polymer. Carbohydrate Polymers, 2016, 147, 146-154.	5.1	301
5	Gelatinization of cornstarch with different amylose/amylopectin content. Carbohydrate Polymers, 2006, 65, 357-363.	5.1	260
6	Thermal degradation and stability of starch under different processing conditions. Starch/Staerke, 2013, 65, 48-60.	1.1	240
7	Starch-based biodegradable materials: Challenges and opportunities. Advanced Industrial and Engineering Polymer Research, 2020, 3, 8-18.	2.7	240
8	Rheological properties of starches with different amylose/amylopectin ratios. Journal of Cereal Science, 2009, 49, 371-377.	1.8	211
9	Preparation and characterization of melt-extruded thermoplastic starch/clay nanocomposites. Composites Science and Technology, 2007, 67, 413-421.	3.8	200
10	Extrusion processing and characterization of edible starch films with different amylose contents. Journal of Food Engineering, 2011, 106, 95-101.	2.7	182
11	Development of self-reinforced polymer composites. Progress in Polymer Science, 2012, 37, 767-780.	11.8	178
12	Crystalline structure and thermal property characterization of chitin from Antarctic krill (Euphausia superba). Carbohydrate Polymers, 2013, 92, 90-97.	5.1	169
13	One-step method to prepare starch-based superabsorbent polymer for slow release of fertilizer. Chemical Engineering Journal, 2017, 309, 607-616.	6.6	158
14	Effect of Matrix–Particle Interfacial Adhesion on the Mechanical Properties of Poly(lactic) Tj ETQq0 0 0 rgBT /C)verlock 10 2.4	0 Tf 50 222 T 156
15	Effects of amylose/amylopectin ratio on starch-based superabsorbent polymers. Carbohydrate Polymers, 2012, 87, 1583-1588.	5.1	153
16	Starch-based antimicrobial films functionalized by pomegranate peel. International Journal of Biological Macromolecules, 2019, 129, 1120-1126.	3.6	147
17	Kinetics and mechanism of thermal decomposition of cornstarches with different amylose/amylopectin ratios. Starch/Staerke, 2010, 62, 139-146.	1.1	146

¹⁸Key interactions in biodegradable thermoplastic starch/poly(vinyl alcohol)/montmorillonite micro-
and nanocomposites. Composites Science and Technology, 2008, 68, 1453-1462.3.8137

#	Article	IF	CITATIONS
19	Glass transition temperature of starch studied by a high-speed DSC. Carbohydrate Polymers, 2009, 77, 250-253.	5.1	136
20	Microstructure and mechanical properties of orientated thermoplastic starches. Journal of Materials Science, 2005, 40, 111-116.	1.7	117
21	Development and preparation of active starch films carrying tea polyphenol. Carbohydrate Polymers, 2018, 196, 162-167.	5.1	116
22	Effect of annealing and orientation on microstructures and mechanical properties of polylactic acid. Polymer Engineering and Science, 2008, 48, 634-641.	1.5	115
23	Starch Modification Using Reactive Extrusion. Starch/Staerke, 2006, 58, 131-139.	1.1	112
24	Biodegradation and thermal decomposition of poly(lactic acid)-based materials reinforced by hydrophilic fillers. Polymer Degradation and Stability, 2010, 95, 1704-1707.	2.7	111
25	In situ thermal decomposition of starch with constant moisture in a sealed system. Polymer Degradation and Stability, 2008, 93, 260-262.	2.7	110
26	Preparation and characterization of starch-based composite films reinfoced by polysaccharide-based crystals. Composites Part B: Engineering, 2018, 133, 122-128.	5.9	103
27	Internal structures and phase-transitions of starch granules during gelatinization. Carbohydrate Polymers, 2011, 83, 1975-1983.	5.1	100
28	Developing hydroxypropyl methylcellulose/hydroxypropyl starch blends for use as capsule materials. Carbohydrate Polymers, 2013, 98, 73-79.	5.1	96
29	An Oral Colon-Targeting Controlled Release System Based on Resistant Starch Acetate: Synthetization, Characterization, and Preparation of Film-Coating Pellets. Journal of Agricultural and Food Chemistry, 2011, 59, 5738-5745.	2.4	89
30	Morphologies and microstructures of cornstarches with different amylose–amylopectin ratios studied by confocal laser scanning microscope. Journal of Cereal Science, 2009, 50, 241-247.	1.8	88
31	Glass transition temperature of starches with different amylose/amylopectin ratios. Journal of Cereal Science, 2010, 51, 388-391.	1.8	86
32	Multi-layer mucilage of Plantago ovata seeds: Rheological differences arise from variations in arabinoxylan side chains. Carbohydrate Polymers, 2017, 165, 132-141.	5.1	86
33	Cold crystallization and postmelting crystallization of PLA plasticized by compressed carbon dioxide. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 2630-2636.	2.4	85
34	Thermal Decomposition of Corn Starch with Different Amylose/Amylopectin Ratios in Open and Sealed Systems. Cereal Chemistry, 2009, 86, 383-385.	1.1	84
35	Phase composition and interface of starch–gelatin blends studied by synchrotron FTIR micro-spectroscopy. Carbohydrate Polymers, 2013, 95, 649-653. 	5.1	84
36	Phase transition of starch granules observed by microscope under shearless and shear conditions. Carbohydrate Polymers, 2007, 68, 495-501.	5.1	83

#	Article	IF	CITATIONS
37	Developing gelatin–starch blends for use as capsule materials. Carbohydrate Polymers, 2013, 92, 455-461.	5.1	82
38	Structure elucidation of fucoidan composed of a novel tetrafucose repeating unit from sea cucumber Thelenota ananas. Food Chemistry, 2014, 146, 113-119.	4.2	82
39	Development and characterization of biodegradable antimicrobial packaging films based on polycaprolactone, starch and pomegranate rind hybrids. Food Packaging and Shelf Life, 2018, 18, 71-79.	3.3	82
40	Retrogradation of corn starch after thermal treatment at different temperatures. Carbohydrate Polymers, 2007, 69, 756-762.	5.1	77
41	Phase transitions of maize starches with different amylose contents in glycerol–water systems. Carbohydrate Polymers, 2011, 85, 180-187.	5.1	74
42	Dietary fucoidan of Acaudina molpadioides and its enzymatically degraded fragments could prevent intestinal mucositis induced by chemotherapy in mice. Food and Function, 2015, 6, 415-422.	2.1	73
43	Effects of annealing on gelatinization and microstructures of corn starches with different amylose/amylopectin ratios. Carbohydrate Polymers, 2009, 77, 662-669.	5.1	71
44	Structural study of fucoidan from sea cucumber Acaudina molpadioides: A fucoidan containing novel tetrafucose repeating unit. Food Chemistry, 2014, 142, 197-200.	4.2	70
45	The properties of antimicrobial films derived from poly(lactic acid)/starch/chitosan blended matrix. Carbohydrate Polymers, 2013, 98, 959-966.	5.1	69
46	Superhydrophobic Modification on Starch Film Using PDMS and Ball-Milled MMT Coating. ACS Sustainable Chemistry and Engineering, 2020, 8, 10423-10430.	3.2	67
47	Rheological properties and phase transition of starch under shear stress. Food Hydrocolloids, 2008, 22, 973-978.	5.6	66
48	Effects of hydrophilic fillers on the thermal degradation of poly(lactic acid). Thermochimica Acta, 2010, 509, 147-151.	1.2	66
49	Primary structure and chain conformation of fucoidan extracted from sea cucumber Holothuria tubulosa. Carbohydrate Polymers, 2016, 136, 1091-1097.	5.1	66
50	Starch gelatinization under pressure studied by high pressure DSC. Carbohydrate Polymers, 2009, 75, 395-400.	5.1	64
51	How water acting as both blowing agent and plasticizer affect on starch-based foam. Industrial Crops and Products, 2019, 134, 43-49.	2.5	59
52	A new study of starch gelatinization under shear stress using dynamic mechanical analysis. Carbohydrate Polymers, 2008, 72, 229-234.	5.1	58
53	Enzymatic preparation and structural determination of oligosaccharides derived from sea cucumber (Acaudina molpadioides) fucoidan. Food Chemistry, 2013, 139, 702-709.	4.2	58
54	Structure and rheological characteristics of fucoidan from sea cucumber Apostichopus japonicus. Food Chemistry, 2015, 180, 71-76.	4.2	58

#	Article	IF	CITATIONS
55	Developing acrylated epoxidized soybean oil coating for improving moisture sensitivity and permeability of starch-based film. International Journal of Biological Macromolecules, 2019, 125, 370-375.	3.6	58
56	Morphology and Microstructure of Maize Starches with Different Amylose/Amylopectin Content. Starch/Staerke, 2006, 58, 611-615.	1.1	57
57	Effect of compatibilizer distribution on the blends of starch/biodegradable polyesters. Journal of Applied Polymer Science, 2007, 103, 812-818.	1.3	55
58	Preparation and characterization of starchâ€based composite films reinforced by corn and wheat hulls. Journal of Applied Polymer Science, 2017, 134, 45159.	1.3	55
59	Melt Strength and Rheological Properties of Biodegradable Poly(Lactic Aacid) Modified via Alkyl Radical-Based Reactive Extrusion Processes. Journal of Polymers and the Environment, 2012, 20, 741-747.	2.4	52
60	Shear degradation of corn starches with different amylose contents. Food Hydrocolloids, 2017, 66, 199-205.	5.6	50
61	Accelerating the degradation of polyolefins through additives and blending. Journal of Applied Polymer Science, 2014, 131, .	1.3	46
62	Effect of pressure with shear stress on gelatinization of starches with different amylose/amylopectin ratios. Food Hydrocolloids, 2017, 72, 331-337.	5.6	46
63	Design, Preparation and Characterization of Selfâ€Reinforced Starch Films through Chemical Modification. Macromolecular Materials and Engineering, 2010, 295, 1025-1030.	1.7	45
64	Insights into the hierarchical structure and digestion rate of alkali-modulated starches with different amylose contents. Carbohydrate Polymers, 2016, 144, 271-281.	5.1	45
65	Gelatinized starch/biodegradable polyester blends: Processing, morphology, and properties. Journal of Applied Polymer Science, 2007, 103, 802-811.	1.3	44
66	Study of different effects on foaming process of biodegradable PLA/starch composites in supercritical/compressed carbon dioxide. Journal of Applied Polymer Science, 2008, 109, 2679-2686.	1.3	43
67	Rheological properties and phase transition of cornstarches with different amylose/amylopectin ratios under shear stress. Starch/Staerke, 2010, 62, 667-675.	1.1	42
68	Thermal behaviour of poly(lactic acid) in contact with compressed carbon dioxide. Polymer International, 2009, 58, 368-372.	1.6	40
69	Effect of annealing and pressure on microstructure of cornstarches with different amylose/amylopectin ratios. Carbohydrate Research, 2009, 344, 350-354.	1.1	39
70	Improvement of Interfacial Interaction between Hydrophilic Starch Film and Hydrophobic Biodegradable Coating. ACS Sustainable Chemistry and Engineering, 2019, 7, 9506-9514.	3.2	39
71	An improved approach for evaluating the semicrystalline lamellae of starch granules by synchrotron SAXS. Carbohydrate Polymers, 2017, 158, 29-36.	5.1	36
72	Preparation and characterization of edible starch film reinforced by laver. International Journal of Biological Macromolecules, 2019, 129, 944-951.	3.6	36

#	Article	IF	CITATIONS
73	Natural Biopolymer Alloys with Superior Mechanical Properties. ACS Sustainable Chemistry and Engineering, 2019, 7, 2792-2802.	3.2	36
74	Thermal-oxidative degradation of high-amylose corn starch. Journal of Thermal Analysis and Calorimetry, 2014, 115, 659-665.	2.0	35
75	Rheological and structural properties of complex arabinoxylans from Plantago ovata seed mucilage under non-gelled conditions. Carbohydrate Polymers, 2018, 193, 179-188.	5.1	35
76	Preparation and characterization of starchâ€based composite films reinforced by apricot and walnut shells. Journal of Applied Polymer Science, 2019, 136, 47978.	1.3	35
77	Enhancing compatibilizer function by controlled distribution in hydrophobic polylactic acid/hydrophilic starch blends. Journal of Applied Polymer Science, 2011, 119, 2189-2195.	1.3	34
78	Synthesis and Characterization of Biodegradable Starch-Polyacrylamide Graft Copolymers Using Starches with Different Microstructures. Journal of Polymers and the Environment, 2013, 21, 359-365.	2.4	34
79	How rheological behaviors of concentrated starch affect graft copolymerization of acrylamide and resultant hydrogel. Carbohydrate Polymers, 2019, 219, 395-404.	5.1	34
80	Understanding the microstructure and absorption rate of starch-based superabsorbent polymers prepared under high starch concentration. Carbohydrate Polymers, 2017, 175, 141-148.	5.1	33
81	Foaming behaviour and cell structure of poly(lactic acid) after various modifications. Polymer International, 2013, 62, 759-765.	1.6	32
82	Rheological and gel properties of hydroxypropyl methylcellulose/hydroxypropyl starch blends. Colloid and Polymer Science, 2015, 293, 229-237.	1.0	32
83	Influence of crosslinker amount on the microstructure and properties of starch-based superabsorbent polymers by one-step preparation at high starch concentration. International Journal of Biological Macromolecules, 2019, 129, 679-685.	3.6	32
84	Thermomechanically processed chitosan:gelatin films being transparent, mechanically robust and less hygroscopic. Carbohydrate Polymers, 2021, 272, 118522.	5.1	29
85	Preparation and characterization of uniaxial poly(lactic acid)-based self-reinforced composites. Composites Science and Technology, 2015, 117, 392-397.	3.8	28
86	On the investigation of thermal/cooling-gel biphasic systems based on hydroxypropyl methylcellulose and hydroxypropyl starch. Industrial Crops and Products, 2018, 124, 418-428.	2.5	28
87	Morphology and phase composition of gelatin-starch blends. Chinese Journal of Polymer Science (English Edition), 2014, 32, 108-114.	2.0	27
88	Preparation, microstructure and performance of poly (lactic acid)-Poly (butylene) Tj ETQq0 0 0 rgBT /Overlock 10 107384.) Tf 50 14 5.9	7 Td (succina 26
89	Effect of starch microstructure on microwave-assisted esterification. International Journal of Biological Macromolecules, 2020, 164, 2550-2557.	3.6	26
90	Starch Gelatinization under Shearless and Shear Conditions. International Journal of Food Engineering, 2007, 2, .	0.7	25

^{0.7} 25

#	Article	lF	CITATIONS
91	Extrusion Processing of Starch Film. International Journal of Food Engineering, 2009, 5, .	0.7	25
92	Morphology and properties of thermal/cooling-gel bi-phasic systems based on hydroxypropyl methylcellulose and hydroxypropyl starch. Composites Part B: Engineering, 2016, 101, 46-52.	5.9	25
93	Rheokinetics of graft copolymerization of acrylamide in concentrated starch and rheological behaviors and microstructures of reaction products. Carbohydrate Polymers, 2018, 192, 1-9.	5.1	25
94	Effect of plasticizers on microstructure, compatibility and mechanical property of hydroxypropyl methylcellulose/hydroxypropyl starch blends. International Journal of Biological Macromolecules, 2018, 119, 141-148.	3.6	25
95	Rheological Properties of Starch-Based Materials and Starch/Poly(lactic acid) Blends. Macromolecular Symposia, 2007, 249-250, 529-534.	0.4	24
96	Poly(lactic acid)/starch composites: Effect of microstructure and morphology of starch granules on performance. Journal of Applied Polymer Science, 2017, 134, 45504.	1.3	24
97	Effect of alkanol surface grafting on the hydrophobicity of starch-based films. International Journal of Biological Macromolecules, 2018, 112, 761-766.	3.6	24
98	Multi-scale assembly of hydrogels formed by highly branched arabinoxylans from Plantago ovata seed mucilage studied by USANS/SANS and rheology. Carbohydrate Polymers, 2019, 207, 333-342.	5.1	24
99	Starch modification using a twinâ€roll mixer as a reactor. Starch/Staerke, 2012, 64, 821-825.	1.1	23
100	Anchor and bridge functions of APTES layer on interface between hydrophilic starch films and hydrophobic soyabean oil coating. Carbohydrate Polymers, 2021, 272, 118450.	5.1	23
101	Morphologies and Thermal Properties of Hydroxypropylated Highâ€Amylose Corn Starch. Cereal Chemistry, 2010, 87, 144-149.	1.1	21
102	Nanostabilization of thermally processed high amylose hydroxylpropylated starch films. Carbohydrate Polymers, 2011, 86, 652-658.	5.1	21
103	Preparation and characterization of starch/enteromorpha/nano-clay hybrid composites. International Journal of Biological Macromolecules, 2020, 150, 16-22.	3.6	21
104	Starch-Based Foams Nucleated and Reinforced by Polysaccharide-Based Crystals. ACS Sustainable Chemistry and Engineering, 2022, 10, 2169-2179.	3.2	21
105	Starch thermal transitions comparatively studied by DSC and MTDSC. Starch/Staerke, 2010, 62, 350-357.	1.1	20
106	Relationship between morphologies and mechanical properties of hydroxypropyl methylcellulose/hydroxypropyl starch blends. Carbohydrate Polymers, 2016, 153, 329-335.	5.1	20
107	Thermal Behaviour of High Amylose Cornstarch Studied by DSC. International Journal of Food Engineering, 2005, 1, .	0.7	19
108	Formation of highly oriented biodegradable polybutylene succinate adipate nanocomposites: Effects of cation structures on morphology, free volume, and properties. Journal of Applied Polymer Science, 2009, 113, 3716-3724.	1.3	19

#	Article	IF	CITATIONS
109	Retrogradation of waxy cornstarch studied by DSC. Starch/Staerke, 2010, 62, 524-529.	1.1	19
110	Effect of processing conditions on microstructures and properties of hydroxypropyl methylcellulose/hydroxypropyl starch blends. Food Hydrocolloids, 2017, 70, 251-259.	5.6	19
111	Chemical mapping analysis of compatibility in gelatin and hydroxypropyl methylcellulose blend films. Food Hydrocolloids, 2020, 104, 105734.	5.6	19
112	Effects of thermal treatment on the microstructure and thermal and mechanical properties of poly(lactic acid) fibers. Polymer Engineering and Science, 2013, 53, 976-981.	1.5	18
113	Morphology and phase transition of waxy cornstarch in solvents of 1-allyl-3-methylimidazolium chloride/water. International Journal of Biological Macromolecules, 2015, 78, 304-312.	3.6	17
114	pH controlled gelation behavior and morphology of gelatin/hydroxypropylmethylcellulose blend in aqueous solution. Food Hydrocolloids, 2020, 104, 105733.	5.6	17
115	De-glycosylation and enhanced bioactivity of flavonoids from apple pomace during extraction with deep eutectic solvents. Green Chemistry, 2021, 23, 7199-7209.	4.6	16
116	Plasticization Efficiency and Characteristics of Monosaccharides, Disaccharides, and Low-Molecular-Weight Polysaccharides for Starch-Based Materials. ACS Sustainable Chemistry and Engineering, 2021, 9, 11960-11969.	3.2	16
117	Utilizing heterologously overexpressed endo-1,3-fucanase to investigate the structure of sulfated fucan from sea cucumber (Holothuria hilla). Carbohydrate Polymers, 2021, 272, 118480.	5.1	16
118	DEVELOPMENT OF CAPSULES FROM NATURAL PLAN POLYMERS. Acta Polymerica Sinica, 2012, 013, 1-10.	0.0	16
119	Auxin Treatment Enhances Anthocyanin Production in the Non-Climacteric Sweet Cherry (Prunus) Tj ETQq1 1 0.:	784314 rg 1.8	BT /Overlock
120	New evidences of accelerating degradation of polyethylene by starch. Journal of Applied Polymer Science, 2013, 130, 2282-2287.	1.3	15
121	Correlation Between Gel Strength of Starch-Based Hydrogel and Slow Release Behavior of Its Embedded Urea. Journal of Polymers and the Environment, 2020, 28, 863-870.	2.4	15
122	Synthesis and Drug Delivery Property of Calcium Phosphate Cement with Special Crystal Morphology. Journal of the American Ceramic Society, 2010, 93, 1241-1244.	1.9	12
123	Preparation of cassava starch-based superabsorbent polymer using a twin-roll mixer as reactor. Chinese Journal of Polymer Science (English Edition), 2014, 32, 1348-1356.	2.0	12
124	Hydroxypropyl methylcellulose and hydroxypropyl starch: Rheological and gelation effects on the phase structure of their mixed hydrocolloid system. Food Hydrocolloids, 2021, 115, 106598.	5.6	11
125	Designing and developing biodegradable intelligent package used for monitoring spoilage seafood using aggregation-induced emission indicator. LWT - Food Science and Technology, 2021, 151, 112135.	2.5	11
126	Application of Atomic Force Microscopy on Studying Micro- and Nano-Structures of Starch. International Journal of Food Engineering, 2008, 4, .	0.7	10

#	Article	IF	CITATIONS
127	Thermal behaviors of polystyrene plasticized with compressed carbon dioxide in a sealed system. Polymer Engineering and Science, 2009, 49, 1800-1805.	1.5	10
128	Gelatinization and Retrogradation of Hydroxypropylated Cornstarch. International Journal of Food Engineering, 2010, 6, .	0.7	10
129	Enhancement of proâ€degradant performance in polyethylene/starch blends as a function of distribution. Journal of Applied Polymer Science, 2013, 128, 591-596.	1.3	10
130	A comparison study on phase transition and structure of cornstarch in dimethyl sulfoxide and ionic liquid systems. Journal of Cereal Science, 2016, 71, 53-60.	1.8	10
131	One-Step Extrusion to Minimize Thermal Decomposition for Processing PLA-Based Composites. Journal of Polymers and the Environment, 2019, 27, 158-164.	2.4	10
132	Designing and application of reactive extrusion with twice initiations for graft copolymerization of acrylamide on starch. European Polymer Journal, 2022, 165, 111008.	2.6	10
133	Influence of Moisture Content on Starch Esterification by Solventâ€Free Method. Starch/Staerke, 2021, 73, 2100009.	1.1	9
134	Viscoelastic behaviour of rapid and slow self-healing hydrogels formed by densely branched arabinoxylans from Plantago ovata seed mucilage. Carbohydrate Polymers, 2021, 269, 118318.	5.1	9
135	Developing Edible Starch Film Used for Packaging Seasonings in Instant Noodles. Foods, 2021, 10, 3105.	1.9	9
136	Flexible Poly(ether-block-amide)/Carbon Nanotube Composites for Electromagnetic Interference Shielding. ACS Applied Nano Materials, 2022, 5, 7598-7608.	2.4	9
137	Influence of Aqueous Phase Composition on Double Emulsion Stability and Colour Retention of Encapsulated Anthocyanins. Foods, 2022, 11, 34.	1.9	8
138	Biodegradable composites of poly(butylene succinateâ€ <i>co</i> â€butylene adipate) reinforced by poly(lactic acid) fibers. Journal of Applied Polymer Science, 2016, 133, .	1.3	7
139	Elastomeric foam prepared by supercritical carbon dioxide. Journal of Applied Polymer Science, 2017, 134, .	1.3	7
140	Enhancing water resistance of interface between starch films and acrylated epoxidized soybean oil coating. Progress in Organic Coatings, 2022, 163, 106646.	1.9	7
141	Morphology and Rheology of a Cool-Gel (Protein) Blended with a Thermo-Gel (Hydroxypropyl) Tj ETQq1 1 0.784	314 rgBT / 1.9	Overlock 10
142	Preparation of Cross-Linked High Amylose Corn-Starch and Its Effects on Self-Reinforced Starch Films. International Journal of Food Engineering, 2016, 12, 673-680.	0.7	6
143	Effect of annealing on morphologies and performances of hydroxypropyl methylcellulose/hydroxypropyl starch blends. Journal of Applied Polymer Science, 2020, 137, 49535.	1.3	6
144	Alkali-washing facilitates thermal-processed lignin to slow the hydrolysis of pancreatic α-amylase in starchy foods. Carbohydrate Polymers, 2022, 290, 119502.	5.1	4

#	Article	IF	CITATIONS
145	Spectral-Spatial Graph-Based Semi-supervised Hyperspectral Image Classification. , 2018, , .		1
146	Preparation and Characterization of Instant Casein Phosphopeptide by Supercritical Fluid Assisted Atomization. Foods, 2021, 10, 1555.	1.9	0
147	Closely Packed Conductive Droplets with Polygon-Like Patterns Confined at the Interface in Ternary Polymer Blends. Langmuir, 2022, 38, 3189-3201.	1.6	0