Pirom Chenprakhon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5232904/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiple pathways guide oxygen diffusion into flavoenzyme active sites. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10603-10608.	7.1	157
2	Mechanism of Oxygen Activation in a Flavin-Dependent Monooxygenase: A Nearly Barrierless Formation of C4a-Hydroperoxyflavin via Proton-Coupled Electron Transfer. Journal of the American Chemical Society, 2015, 137, 9363-9374.	13.7	70
3	Monooxygenation of aromatic compounds by flavinâ€dependent monooxygenases. Protein Science, 2019, 28, 8-29.	7.6	67
4	Biotransformation of Plant-Derived Phenolic Acids. Biotechnology Journal, 2018, 13, 1700632.	3.5	62
5	Stabilization of C4a-Hydroperoxyflavin in a Two-component Flavin-dependent Monooxygenase Is Achieved through Interactions at Flavin N5 and C4a Atoms. Journal of Biological Chemistry, 2011, 286, 28170-28180.	3.4	58
6	<i>p</i> -Hydroxyphenylacetate 3-Hydroxylase as a Biocatalyst for the Synthesis of Trihydroxyphenolic Acids. ACS Catalysis, 2015, 5, 4492-4502.	11.2	34
7	Measuring Binding Affinity of Proteinâ^'Ligand Interaction Using Spectrophotometry: Binding of Neutral Red to Riboflavin-Binding Protein. Journal of Chemical Education, 2010, 87, 829-831.	2.3	29
8	Dissecting the low catalytic capability of flavin-dependent halogenases. Journal of Biological Chemistry, 2021, 296, 100068.	3.4	26
9	Enzymes in the p-hydroxyphenylacetate degradation pathway of Acinetobacter baumannii. Journal of Molecular Catalysis B: Enzymatic, 2016, 134, 353-366.	1.8	19
10	Control of C4a-Hydroperoxyflavin Protonation in the Oxygenase Component of <i>p</i> -Hydroxyphenylacetate-3-hydroxylase. Biochemistry, 2014, 53, 4084-4086.	2.5	18
11	Green and sustainable biocatalytic production of 3,4,5-trihydroxycinnamic acid from palm oil mill effluent. Process Biochemistry, 2017, 63, 122-129.	3.7	14
12	Lipase-Catalyzed Esterification: An Inquiry-Based Laboratory Activity To Promote High School Students' Understanding and Positive Perceptions of Green Chemistry. Journal of Chemical Education, 2019, 96, 1205-1211.	2.3	14
13	Protonation status and control mechanism of flavin–oxygen intermediates in the reaction of bacterial luciferase. FEBS Journal, 2021, 288, 3246-3260.	4.7	13
14	Hydroxylation of 4-hydroxyphenylethylamine derivatives by R263 variants of the oxygenase component of p -hydroxyphenylacetate-3-hydroxylase. Archives of Biochemistry and Biophysics, 2017, 620, 1-11.	3.0	11
15	Mechanistic insights into the dual activities of the single active site of I-lysine oxidase/monooxygenase from Pseudomonas sp. AlU 813. Journal of Biological Chemistry, 2020, 295, 11246-11261.	3.4	11
16	Tuning of pK values activates substrates in flavin-dependent aromatic hydroxylases. Journal of Biological Chemistry, 2020, 295, 3965-3981.	3.4	11
17	An Experiment Illustrating the Change in Ligand p <i>K</i> _a upon Protein Binding. Journal of Chemical Education, 2012, 89, 791-795.	2.3	10
10	Phanalic hydroxylacas The Enzymes 2020 47 283 226	17	7

18 Phenolic hydroxylases. The Enzymes, 2020, 47, 283-326.

1.7 7