Paul Bastard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5232491/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs. Science Immunology, 2023, 8, .	5.6	35
2	Persistent Coronavirus Disease 2019 (COVID-19) in an Immunocompromised Host Treated by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)-Specific Monoclonal Antibodies. Clinical Infectious Diseases, 2022, 74, 1706-1707.	2.9	14
3	Identification of driver genes for critical forms of COVID-19 in a deeply phenotyped young patient cohort. Science Translational Medicine, 2022, 14, eabj7521.	5.8	71
4	A global effort to dissect the human genetic basis of resistance to SARS-CoV-2 infection. Nature Immunology, 2022, 23, 159-164.	7.0	41
5	X-Linked TLR7 Deficiency Underlies Critical COVID-19 Pneumonia in a Male Patient with Ataxia-Telangiectasia. Journal of Clinical Immunology, 2022, 42, 1-9.	2.0	34
6	Autoantibodies and SARS-CoV2 infection: The spectrum from association to clinical implication: Report of the 15th Dresden Symposium on Autoantibodies. Autoimmunity Reviews, 2022, 21, 103012.	2.5	60
7	Human genetic and immunological determinants of critical COVID-19 pneumonia. Nature, 2022, 603, 587-598.	13.7	216
8	Autoantibodies Neutralizing Type I Interferons in 20% of COVID-19 Deaths in a French Hospital. Journal of Clinical Immunology, 2022, 42, 459-470.	2.0	46
9	Type I interferons and SARS-CoV-2: from cells to organisms. Current Opinion in Immunology, 2022, 74, 172-182.	2.4	49
10	Inherited IFNAR1 Deficiency in a Child with Both Critical COVID-19 Pneumonia and Multisystem Inflammatory Syndrome. Journal of Clinical Immunology, 2022, 42, 471-483.	2.0	44
11	Autoantibodies against type I IFNs in patients with Ph-negative myeloproliferative neoplasms. Blood, 2022, 139, 2716-2720.	0.6	3
12	TIM3+ <i> TRBV11-2</i> T cells and IFNÎ ³ signature in patrolling monocytes and CD16+ NK cells delineate MIS-C. Journal of Experimental Medicine, 2022, 219, .	4.2	57
13	Why do people die from COVID-19?. Science, 2022, 375, 829-830.	6.0	6
14	Human autoantibodies underlying infectious diseases. Journal of Experimental Medicine, 2022, 219, .	4.2	55
15	Low Lymphocytes and IFN-Neutralizing Autoantibodies as Biomarkers of COVID-19 Mortality. Journal of Clinical Immunology, 2022, 42, 738-741.	2.0	5
16	Diagnosis of APS-1 in Two Siblings Following Life-Threatening COVID-19 Pneumonia. Journal of Clinical Immunology, 2022, 42, 749-752.	2.0	10
17	A loss-of-function <i>IFNAR1</i> allele in Polynesia underlies severe viral diseases in homozygotes. Journal of Experimental Medicine, 2022, 219, .	4.2	28
18	Human NLRP1 is a sensor of pathogenic coronavirus 3CL proteases in lung epithelial cells. Molecular Cell, 2022, 82, 2385-2400.e9.	4.5	61

Paul Bastard

#	Article	IF	CITATIONS
19	The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2200413119.	3.3	110
20	Autoantibodies Neutralizing Type I INFs May Be Associated with Efficacy of Tocilizumab in COVID-19 Pneumonia. Journal of Clinical Immunology, 2022, 42, 1107-1110.	2.0	3
21	Respiratory viral infections in otherwise healthy humans with inherited IRF7 deficiency. Journal of Experimental Medicine, 2022, 219, .	4.2	21
22	Recessive inborn errors of type I IFN immunity in children with COVID-19 pneumonia. Journal of Experimental Medicine, 2022, 219, .	4.2	59
23	Neutralizing Type I Interferon Autoantibodies in Japanese Patients with Severe COVID-19. Journal of Clinical Immunology, 2022, 42, 1360-1370.	2.0	24
24	Safety and efficacy of convalescent plasma for severe COVID-19: a randomized, single blinded, parallel, controlled clinical study. BMC Infectious Diseases, 2022, 22, .	1.3	9
25	Herpes simplex encephalitis in a patient with a distinctive form of inherited IFNAR1 deficiency. Journal of Clinical Investigation, 2021, 131, .	3.9	64
26	Antibodies against type I interferon: detection and association with severe clinical outcome in COVIDâ€19 patients. Clinical and Translational Immunology, 2021, 10, e1327.	1.7	79
27	Distinct antibody repertoires against endemic human coronaviruses in children and adults. JCI Insight, 2021, 6, .	2.3	40
28	Plasma Exchange to Rescue Patients with Autoantibodies Against Type I Interferons and Life-Threatening COVID-19 Pneumonia. Journal of Clinical Immunology, 2021, 41, 536-544.	2.0	62
29	Auto-antibodies to type I IFNs can underlie adverse reactions to yellow fever live attenuated vaccine. Journal of Experimental Medicine, 2021, 218, .	4.2	130
30	Interferon-β Therapy in a Patient with Incontinentia Pigmenti and Autoantibodies against Type I IFNs Infected with SARS-CoV-2. Journal of Clinical Immunology, 2021, 41, 931-933.	2.0	40
31	SARS-CoV-2–related MIS-C: A key to the viral and genetic causes of Kawasaki disease?. Journal of Experimental Medicine, 2021, 218, .	4.2	100
32	Neutralizing Autoantibodies to Type I IFNs in >10% of Patients with Severe COVID-19 Pneumonia Hospitalized in Madrid, Spain. Journal of Clinical Immunology, 2021, 41, 914-922.	2.0	100
33	Preexisting autoantibodies to type I IFNs underlie critical COVID-19 pneumonia in patients with APS-1. Journal of Experimental Medicine, 2021, 218, .	4.2	185
34	Inherited deficiency of stress granule ZNFX1 in patients with monocytosis and mycobacterial disease. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	47
35	Autoantibodies against type I interferons are associated with multi-organ failure in COVID-19 patients. Intensive Care Medicine, 2021, 47, 704-706.	3.9	93
36	Polyclonal expansion of TCR Vβ 21.3 ⁺ CD4 ⁺ and CD8 ⁺ T cells is a hallmark of multisystem inflammatory syndrome in children. Science Immunology, 2021, 6, .	5.6	105

PAUL BASTARD

#	Article	IF	CITATIONS
37	Neutralizing Autoantibodies to Type I Interferons in COVID-19 Convalescent Donor Plasma. Journal of Clinical Immunology, 2021, 41, 1169-1171.	2.0	53
38	High Th2 cytokine levels and upper airway inflammation in human inherited T-bet deficiency. Journal of Experimental Medicine, 2021, 218, .	4.2	25
39	Insufficient type I IFN immunity underlies life-threatening COVID-19 pneumonia. Comptes Rendus - Biologies, 2021, 344, 19-25.	0.1	16
40	Atypical Inflammatory Syndrome Triggered by SARS-CoV-2 in Infants with Down Syndrome. Journal of Clinical Immunology, 2021, 41, 1457-1462.	2.0	9
41	Harnessing Type I IFN Immunity Against SARS-CoV-2 with Early Administration of IFN-β. Journal of Clinical Immunology, 2021, 41, 1425-1442.	2.0	39
42	Association of rare predicted loss-of-function variants of influenza-related type I IFN genes with critical COVID-19 pneumonia. Journal of Clinical Investigation, 2021, 131, .	3.9	12
43	Early nasal type I IFN immunity against SARS-CoV-2 is compromised in patients with autoantibodies against type I IFNs. Journal of Experimental Medicine, 2021, 218, .	4.2	85
44	Neutralizing typeâ€l interferon autoantibodies are associated with delayed viral clearance and intensive care unit admission in patients with COVIDâ€19. Immunology and Cell Biology, 2021, 99, 917-921.	1.0	69
45	Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths. Science Immunology, 2021, 6, .	5.6	357
46	X-linked recessive TLR7 deficiency in ~1% of men under 60 years old with life-threatening COVID-19. Science Immunology, 2021, 6, .	5.6	267
47	Type I interferon autoantibodies are associated with systemic immune alterations in patients with COVID-19. Science Translational Medicine, 2021, 13, eabh2624.	5.8	155
48	Pre-existing Autoantibodies Neutralizing High Concentrations of Type I Interferons in Almost 10% of COVID-19 Patients Admitted to Intensive Care in Barcelona. Journal of Clinical Immunology, 2021, 41, 1733-1744.	2.0	66
49	IFN-α2a Therapy in Two Patients with Inborn Errors of TLR3 and IRF3 Infected with SARS-CoV-2. Journal of Clinical Immunology, 2021, 41, 26-27.	2.0	40
50	Monoclonal antibody-mediated neutralization of SARS-CoV-2 in an IRF9-deficient child. Proceedings of the United States of America, 2021, 118, .	3.3	24
51	Inborn errors of TLR3- or MDA5-dependent type I IFN immunity in children with enterovirus rhombencephalitis. Journal of Experimental Medicine, 2021, 218, .	4.2	12
52	Autoantibodies Against Type I IFNs in Patients with Ph-Negative Myeloproliferative Neoplasms. Blood, 2021, 138, 3587-3587.	0.6	0
53	Life-Threatening COVID-19: Defective Interferons Unleash Excessive Inflammation. Med, 2020, 1, 14-20.	2.2	110
54	Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science, 2020, 370, .	6.0	1,749

PAUL BASTARD

#	Article	IF	CITATIONS
55	Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science, 2020, 370, .	6.0	1,983
56	Different Clinical Presentations and Outcomes of Disseminated Varicella in Children With Primary and Acquired Immunodeficiencies. Frontiers in Immunology, 2020, 11, 595478.	2.2	5
57	A Global Effort to Define the Human Genetics of Protective Immunity to SARS-CoV-2 Infection. Cell, 2020, 181, 1194-1199.	13.5	185
58	Severe COVID-19 in the young and healthy: monogenic inborn errors of immunity?. Nature Reviews Immunology, 2020, 20, 455-456.	10.6	47
59	Artificial Intelligence in Nephrology: Core Concepts, Clinical Applications, and Perspectives. American Journal of Kidney Diseases, 2019, 74, 803-810.	2.1	90
60	Inherited IL-18BP deficiency in human fulminant viral hepatitis. Journal of Experimental Medicine, 2019, 216, 1777-1790.	4.2	70
61	Severe influenza pneumonitis in children with inherited TLR3 deficiency. Journal of Experimental Medicine, 2019, 216, 2038-2056.	4.2	134
62	A Successful Renal Transplant in a Pediatric Patient With Glanzmann Thrombasthenia and Hyperimmunization. Experimental and Clinical Transplantation, 2019, 17, 831-834.	0.2	0
63	Artificial Intelligence Can Predict GFR Decline During the Course of ADPKD. American Journal of Kidney Diseases, 2018, 71, 911-912.	2.1	20
64	Artificial intelligence improves estimation of tacrolimus area under the concentration over time curve in renal transplant recipients. Transplant International, 2018, 31, 940-941.	0.8	19
65	Artificial intelligence outperforms experienced nephrologists to assess dry weight in pediatric patients on chronic hemodialysis. Pediatric Nephrology, 2018, 33, 1799-1803.	0.9	32