
Xuehua Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/523231/publications.pdf Version: 2024-02-01

XUEHIIA ZHANC

#	Article	IF	CITATIONS
1	In-situ fabrication of metal oxide nanocaps based on biphasic reactions with surface nanodroplets. Journal of Colloid and Interface Science, 2022, 608, 2235-2245.	9.4	8
2	Interfacial Partitioning Enhances Microextraction by Multicomponent Nanodroplets. Journal of Physical Chemistry C, 2022, 126, 1326-1336.	3.1	10
3	Surface Microlenses for Much More Efficient Photodegradation in Water Treatment. ACS ES&T Water, 2022, 2, 644-657.	4.6	8
4	Critical Shear Stress of Clathrate and Semiclathrate Hydrates on Solid Substrates. Energy & Fuels, 2022, 36, 3619-3627.	5.1	4
5	Water-mediated adhesion of oil sands on solid surfaces at low temperature. Fuel, 2022, 320, 123778.	6.4	3
6	Surface Properties of Colloidal Particles Affect Colloidal Self-Assembly in Evaporating Self-Lubricating Ternary Droplets. ACS Applied Materials & Interfaces, 2022, 14, 2275-2290.	8.0	13
7	Ultrasensitive Picomolar Detection of Aqueous Acids in Microscale Fluorescent Droplets. ACS Sensors, 2022, 7, 245-252.	7.8	6
8	CFD Simulation of Turbulent non-Newtonian Slurry Flows in Horizontal Pipelines. Industrial & Engineering Chemistry Research, 2022, 61, 5324-5339.	3.7	7
9	Size distribution of primary submicron particles and larger aggregates in solvent-induced asphaltene precipitation in a model oil system. Fuel, 2022, 322, 124057.	6.4	6
10	Review on formation of cold plasma activated water (PAW) and the applications in food and agriculture. Food Research International, 2022, 157, 111246.	6.2	48
11	Growth Rates of Hydrogen Microbubbles in Reacting Femtoliter Droplets. Langmuir, 2022, 38, 6638-6646.	3.5	4
12	Microbubble-enhanced water activation by cold plasma. Chemical Engineering Journal, 2022, 446, 137318.	12.7	20
13	Sequential droplet reactions for surface-bound gold nanocrater array. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 649, 129325.	4.7	5
14	General mechanism and mitigation for strong adhesion of frozen oil sands on solid substrates. Fuel, 2022, 325, 124797.	6.4	2
15	Oilingâ€Out Crystallization of Betaâ€Alanine on Solid Surfaces Controlled by Solvent Exchange. Advanced Materials Interfaces, 2021, 8, 2001200.	3.7	18
16	Surface nanodroplet-based nanoextraction from sub-milliliter volumes of dense suspensions. Lab on A Chip, 2021, 21, 2574-2585.	6.0	10
17	Ouzo Column under Impact: Formation of Emulsion Jet and Oil-Lubricated Droplet. Langmuir, 2021, 37, 2056-2064.	3.5	1
18	Particle Size Determines the Shape of Supraparticles in Self-Lubricating Ternary Droplets. ACS Nano, 2021, 15, 4256-4267	14.6	26

#	Article	IF	CITATIONS
19	Formation and Stability of Cavitation Microbubbles in Process Water from the Oilsands Industry. Industrial & Engineering Chemistry Research, 2021, 60, 3198-3209.	3.7	21
20	Enhanced Displacement of Phase Separating Liquid Mixtures in 2D Confined Spaces. Energy & Fuels, 2021, 35, 5194-5205.	5.1	14
21	Microfluidic device coupled with total internal reflection microscopy for in situ observation of precipitation. European Physical Journal E, 2021, 44, 57.	1.6	9
22	Effects of Chemical and Geometric Microstructures on the Crystallization of Surface Droplets during Solvent Exchange. Langmuir, 2021, 37, 5290-5298.	3.5	6
23	Synergy between Dual Polymers and Sand-to-Fines Ratio for Enhanced Flocculation of Oil Sand Mature Fine Tailings. Energy & Fuels, 2021, 35, 8884-8894.	5.1	5
24	How Fast do Microdroplets Generated During Liquid–Liquid Phase Separation Move in a Confined 2D Space?. Energy & Fuels, 2021, 35, 11257-11270.	5.1	3
25	Marangoni instability triggered by selective evaporation of a binary liquid inside a Hele-Shaw cell. Journal of Fluid Mechanics, 2021, 923, .	3.4	7
26	Primary submicron particles from early stage asphaltene precipitation revealed in situ by total internal reflection fluorescence microscopy in a model oil system. Fuel, 2021, 296, 120584.	6.4	16
27	Size Effect on the Reaction Rate of Surface Nanodroplets. Journal of Physical Chemistry C, 2021, 125, 15324-15334.	3.1	6
28	Phase Separation of an Evaporating Ternary Solution in a Hele-Shaw Cell. Langmuir, 2021, 37, 10450-10460.	3.5	3
29	Tuning Composition of Multicomponent Surface Nanodroplets in a Continuous Flowâ€In System. Advanced Materials Interfaces, 2021, 8, 2101126.	3.7	7
30	Propelling microdroplets generated and sustained by liquid–liquid phase separation in confined spaces. Soft Matter, 2021, 17, 5362-5374.	2.7	10
31	Self-Propelled Detachment upon Coalescence of Surface Bubbles. Physical Review Letters, 2021, 127, 235501.	7.8	21
32	One‣tep Nanoextraction and Ultrafast Microanalysis Based on Nanodroplet Formation in an Evaporating Ternary Liquid Microfilm. Advanced Materials Technologies, 2020, 5, 1900740.	5.8	10
33	Synchrotron Radiation-Based FTIR Microspectroscopic Imaging of Traumatically Injured Mouse Brain Tissue Slices. ACS Omega, 2020, 5, 29698-29705.	3.5	7
34	Accelerated Formation of H ₂ Nanobubbles from a Surface Nanodroplet Reaction. ACS Nano, 2020, 14, 10944-10953.	14.6	28
35	Microbubble-Enhanced Recovery of Residual Bitumen from the Tailings of Oil Sands Extraction in a Laboratory-Scale Pipeline. Energy & Fuels, 2020, 34, 16476-16485.	5.1	18
36	Physicochemical hydrodynamics of droplets out of equilibrium. Nature Reviews Physics, 2020, 2, 426-443.	26.6	126

#	Article	IF	CITATIONS
37	Encapsulated Nanodroplets for Enhanced Fluorescence Detection by Nanoâ€Extraction. Small, 2020, 16, 2004162.	10.0	7
38	Integrated Nanoextraction and Colorimetric Reactions in Surface Nanodroplets for Combinative Analysis. Analytical Chemistry, 2020, 92, 12442-12450.	6.5	14
39	Viscosity-Mediated Growth and Coalescence of Surface Nanodroplets. Journal of Physical Chemistry C, 2020, 124, 12476-12484.	3.1	12
40	Speeding up biphasic reactions with surface nanodroplets. Lab on A Chip, 2020, 20, 2965-2974.	6.0	12
41	Ultrahigh Density of Gas Molecules Confined in Surface Nanobubbles in Ambient Water. Journal of the American Chemical Society, 2020, 142, 5583-5593.	13.7	88
42	Gas–Vapor Interplay in Plasmonic Bubble Shrinkage. Journal of Physical Chemistry C, 2020, 124, 5861-5869.	3.1	22
43	Marangoni puffs: dramatically enhanced dissolution of droplets with an entrapped bubble. Soft Matter, 2020, 16, 4520-4527.	2.7	4
44	Automated Femtoliter Droplet-Based Determination of Oil–Water Partition Coefficient. Analytical Chemistry, 2019, 91, 10371-10375.	6.5	26
45	Control of Femtoliter Liquid on a Microlens: A Way to Flexible Dual-Microlens Arrays. ACS Applied Materials & Interfaces, 2019, 11, 27386-27393.	8.0	18
46	Plasmonic Bubble Nucleation and Growth in Water: Effect of Dissolved Air. Journal of Physical Chemistry C, 2019, 123, 23586-23593.	3.1	29
47	Porous supraparticle assembly through self-lubricating evaporating colloidal ouzo drops. Nature Communications, 2019, 10, 478.	12.8	61
48	Solvent Exchange in a Hele–Shaw Cell: Universality of Surface Nanodroplet Nucleation. Journal of Physical Chemistry C, 2019, 123, 5571-5577.	3.1	11
49	Splitting droplets through coalescence of two different three-phase contact lines. Soft Matter, 2019, 15, 6055-6061.	2.7	9
50	Formation of Polystyrene Microlenses via Transient Droplets from the Ouzo Effect for Enhanced Optical Imaging. Journal of Physical Chemistry C, 2019, 123, 14327-14337.	3.1	13
51	Surface Nanodroplets: Formation, Dissolution, and Applications. Langmuir, 2019, 35, 12583-12596.	3.5	33
52	Microdroplet nucleation by dissolution of a multicomponent drop in a host liquid. Journal of Fluid Mechanics, 2019, 870, 217-246.	3.4	22
53	Sequential Evaporation–Induced Formation of Polymeric Surface Microdents via Ouzo Effect. Advanced Materials Interfaces, 2019, 6, 1900002.	3.7	4
54	Bouncing Oil Droplet in a Stratified Liquid and its Sudden Death. Physical Review Letters, 2019, 122, 154502.	7.8	40

#	Article	IF	CITATIONS
55	Controlled addition of new liquid component into surface droplet arrays by solvent exchange. Journal of Colloid and Interface Science, 2019, 543, 164-173.	9.4	12
56	Plasmonic Nanobubbles in "Armored―Surface Nanodroplets. Journal of Physical Chemistry C, 2019, 123, 29866-29874.	3.1	13
57	Functional Femtoliter Droplets for Ultrafast Nanoextraction and Supersensitive Online Microanalysis. Small, 2019, 15, e1804683.	10.0	34
58	Morphology of Evaporating Sessile Microdroplets on Lyophilic Elliptical Patches. Langmuir, 2019, 35, 2099-2105.	3.5	4
59	Flow-induced dissolution of femtoliter surface droplet arrays. Lab on A Chip, 2018, 18, 1066-1074.	6.0	21
60	Coalescence driven self-organization of growing nanodroplets around a microcap. Soft Matter, 2018, 14, 2628-2637.	2.7	11
61	Zipping-Depinning: Dissolution of Droplets on Micropatterned Concentric Rings. Langmuir, 2018, 34, 5396-5402.	3.5	10
62	Diffusive interaction of multiple surface nanobubbles: shrinkage, growth, and coarsening. Soft Matter, 2018, 14, 2006-2014.	2.7	47
63	Formation, growth and applications of femtoliter droplets on a microlens. Physical Chemistry Chemical Physics, 2018, 20, 4226-4237.	2.8	10
64	Deformable Hollow Periodic Mesoporous Organosilica Nanocapsules for Significantly Improved Cellular Uptake. Journal of the American Chemical Society, 2018, 140, 1385-1393.	13.7	168
65	Time-Resolved In Situ Liquid-Phase Atomic Force Microscopy and Infrared Nanospectroscopy during the Formation of Metal–Organic Framework Thin Films. Journal of Physical Chemistry Letters, 2018, 9, 1838-1844.	4.6	26
66	Formation of Multicomponent Surface Nanodroplets by Solvent Exchange. Journal of Physical Chemistry C, 2018, 122, 8647-8654.	3.1	35
67	Enhancement of Focused Liquid Jets by Surface Bubbles. Langmuir, 2018, 34, 4234-4240.	3.5	5
68	Plasmonic Bubbles in <i>n</i> -Alkanes. Journal of Physical Chemistry C, 2018, 122, 28375-28381.	3.1	21
69	Extraordinary Focusing Effect of Surface Nanolenses in Total Internal Reflection Mode. ACS Central Science, 2018, 4, 1511-1519.	11.3	13
70	Growth of nanodroplets on a still microfiber under flow conditions. Physical Chemistry Chemical Physics, 2018, 20, 18252-18261.	2.8	6
71	Growth dynamics of microbubbles on microcavity arrays by solvent exchange: Experiments and numerical simulations. Journal of Colloid and Interface Science, 2018, 532, 103-111.	9.4	21
72	Crystallization of Femtoliter Surface Droplet Arrays Revealed by Synchrotron Small-Angle X-ray Scattering. Langmuir, 2018, 34, 9470-9476.	3.5	8

#	Article	IF	CITATIONS
73	Giant and explosive plasmonic bubbles by delayed nucleation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7676-7681.	7.1	76
74	Growth dynamics of surface nanodroplets during solvent exchange at varying flow rates. Soft Matter, 2018, 14, 5197-5204.	2.7	27
75	Entrapment and Dissolution of Microbubbles Inside Microwells. Langmuir, 2018, 34, 10659-10667.	3.5	15
76	Morphological Transformation of Surface Femtodroplets upon Dissolution. Journal of Physical Chemistry Letters, 2017, 8, 584-590.	4.6	15
77	Vapor and Gas-Bubble Growth Dynamics around Laser-Irradiated, Water-Immersed Plasmonic Nanoparticles. ACS Nano, 2017, 11, 2045-2051.	14.6	93
78	Self-wrapping of an ouzo drop induced by evaporation on a superamphiphobic surface. Soft Matter, 2017, 13, 2749-2759.	2.7	47
79	Sessile Nanodroplets on Elliptical Patches of Enhanced Lyophilicity. Langmuir, 2017, 33, 2744-2749.	3.5	13
80	Simple Nanodroplet Templating of Functional Surfaces with Tailored Wettability and Microstructures. Chemistry - an Asian Journal, 2017, 12, 1538-1544.	3.3	6
81	Evaporating pure, binary and ternary droplets: thermal effects and axial symmetry breaking. Journal of Fluid Mechanics, 2017, 823, 470-497.	3.4	126
82	Dissolution dynamics of a suspension droplet in a binary solution for controlled nanoparticle assembly. Nanoscale, 2017, 9, 13441-13448.	5.6	10
83	Formation of surface nanodroplets facing a structured microchannel wall. Lab on A Chip, 2017, 17, 1496-1504.	6.0	15
84	Collective interactions in the nucleation and growth of surface droplets. Soft Matter, 2017, 13, 937-944.	2.7	23
85	Universal nanodroplet branches from confining the Ouzo effect. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10332-10337.	7.1	48
86	Inert Gas Deactivates Protein Activity by Aggregation. Scientific Reports, 2017, 7, 10176.	3.3	25
87	Growth and Detachment of Oxygen Bubbles Induced by Gold-Catalyzed Decomposition of Hydrogen Peroxide. Journal of Physical Chemistry C, 2017, 121, 20769-20776.	3.1	31
88	Effects of stimulated aggrecanolysis on nanoscale morphological and mechanical properties of wild-type and aggrecanase-resistant mutant mice cartilages. European Physical Journal E, 2017, 40, 72.	1.6	4
89	Transparent Silk Fibroin Microspheres from Controlled Droplet Dissolution in a Binary Solution. Langmuir, 2017, 33, 7780-7787.	3.5	9
90	Formation of surface nanodroplets of viscous liquids by solvent exchange. European Physical Journal E, 2017, 40, 26.	1.6	15

#	Article	IF	CITATIONS
91	Formation of surface nanobubbles on nanostructured substrates. Nanoscale, 2017, 9, 1078-1086.	5.6	44
92	Efficient photoinduced charge transfer in chemically-linked organic-metal Ag-P3HT nanocomposites. Optical Materials Express, 2016, 6, 3063.	3.0	3
93	Synthesis of Discrete Alkylâ€ S ilica Hybrid Nanowires and Their Assembly into Nanostructured Superhydrophobic Membranes. Angewandte Chemie - International Edition, 2016, 55, 8375-8380.	13.8	65
94	Formation and dissolution of microbubbles on highly-ordered plasmonic nanopillar arrays. Scientific Reports, 2016, 5, 18515.	3.3	34
95	How a Surface Nanodroplet Sits on the Rim of a Microcap. Langmuir, 2016, 32, 5744-5754.	3.5	8
96	Stability of Surface Nanobubbles: A Molecular Dynamics Study. Langmuir, 2016, 32, 11116-11122.	3.5	77
97	Strain Sensors with Adjustable Sensitivity by Tailoring the Microstructure of Graphene Aerogel/PDMS Nanocomposites. ACS Applied Materials & Interfaces, 2016, 8, 24853-24861.	8.0	195
98	Large Scale Flow-Mediated Formation and Potential Applications of Surface Nanodroplets. ACS Applied Materials & Interfaces, 2016, 8, 22679-22687.	8.0	29
99	Effects of the Molecular Structure of a Self-Assembled Monolayer on the Formation and Morphology of Surface Nanodroplets. Langmuir, 2016, 32, 11197-11202.	3.5	10
100	Collective Effects in Microbubble Growth by Solvent Exchange. Langmuir, 2016, 32, 11265-11272.	3.5	25
101	Microwetting of pH-Sensitive Surface and Anisotropic MoS ₂ Surfaces Revealed by Femtoliter Sessile Droplets. Langmuir, 2016, 32, 11273-11279.	3.5	11
102	Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8642-8647.	7.1	138
103	Dissolution of Sessile Microdroplets of Electrolyte and Graphene Oxide Solutions in an Ouzo System. Langmuir, 2016, 32, 10296-10304.	3.5	6
104	3D spherical-cap fitting procedure for (truncated) sessile nano- and micro-droplets & -bubbles. European Physical Journal E, 2016, 39, 106.	1.6	5
105	Controlling the Growth Modes of Femtoliter Sessile Droplets Nucleating on Chemically Patterned Surfaces. Journal of Physical Chemistry Letters, 2016, 7, 1055-1059.	4.6	35
106	Influence of Solution Composition on the Formation of Surface Nanodroplets by Solvent Exchange. Langmuir, 2016, 32, 1700-1706.	3.5	35
107	Surface nanobubbles and nanodroplets. Reviews of Modern Physics, 2015, 87, 981-1035.	45.6	602
108	Three-dimensional patterns from the thin-film drying of amino acid solutions. Scientific Reports, 2015, 5, 10926.	3.3	6

#	Article	IF	CITATIONS
109	Gravitational Effect on the Formation of Surface Nanodroplets. Langmuir, 2015, 31, 12628-12634.	3.5	22
110	Highly Ordered Arrays of Femtoliter Surface Droplets. Small, 2015, 11, 4850-4855.	10.0	64
111	Confined self-assembly of cellulose nanocrystals in a shrinking droplet. Soft Matter, 2015, 11, 5374-5380.	2.7	40
112	Epoxy nanocomposites containing magnetite-carbon nanofibers aligned using a weak magnetic field. Polymer, 2015, 68, 25-34.	3.8	89
113	Spontaneous Pattern Formation of Surface Nanodroplets from Competitive Growth. ACS Nano, 2015, 9, 11916-11923.	14.6	30
114	Water-Induced Blister Formation in a Thin Film Polymer. Langmuir, 2015, 31, 1017-1025.	3.5	24
115	Mixed mode of dissolving immersed nanodroplets at a solid–water interface. Soft Matter, 2015, 11, 1889-1900.	2.7	65
116	Formation of surface nanodroplets under controlled flow conditions. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9253-9257.	7.1	113
117	Stability of micro-Cassie states on rough substrates. Journal of Chemical Physics, 2015, 142, 244704.	3.0	6
118	Pinning and gas oversaturation imply stable single surface nanobubbles. Physical Review E, 2015, 91, 031003.	2.1	187
119	Stiffness and evolution of interfacial micropancakes revealed by AFM quantitative nanomechanical imaging. Physical Chemistry Chemical Physics, 2015, 17, 13598-13605.	2.8	24
120	Stick-Jump Mode in Surface Droplet Dissolution. Langmuir, 2015, 31, 4696-4703.	3.5	48
121	Nucleation Probability Distributions of Methane–Propane Mixed Gas Hydrates in Salt Solutions and Urea. Energy & Fuels, 2015, 29, 6259-6270.	5.1	11
122	Formation, characterization and stability of oil nanodroplets on immersed substrates. Advances in Colloid and Interface Science, 2015, 224, 17-32.	14.7	7
123	Solvent Effects on the Formation of Surface Nanodroplets by Solvent Exchange. Langmuir, 2015, 31, 12120-12125.	3.5	33
124	Dynamic configuration of reduced graphene oxide in aqueous dispersion and its effect on thin film properties. Chemical Communications, 2015, 51, 17760-17763.	4.1	2
125	Tailoring graphene oxide assemblies by pinning on the contact line of a dissolving microdroplet. Soft Matter, 2015, 11, 8479-8483.	2.7	3
126	Hydrogel Particles: Super-Soft Hydrogel Particles with Tunable Elasticity in a Microfluidic Blood Capillary Model (Adv. Mater. 43/2014). Advanced Materials, 2014, 26, 7416-7416.	21.0	1

#	Article	IF	CITATIONS
127	Perspectives on surface nanobubbles. Biomicrofluidics, 2014, 8, 041301.	2.4	48
128	Optical Characterisation of Non-Covalent Interactions between Non-Conjugated Polymers and Chemically Converted Graphene. Australian Journal of Chemistry, 2014, 67, 168.	0.9	3
129	Surface Nanobubbles Nucleate Microdroplets. Physical Review Letters, 2014, 112, 144503.	7.8	61
130	Synthesis of Anisotropic, Amphiphilic Grafted Multi-Star Polymers and Investigation of their Self-Assembling Characteristics. Australian Journal of Chemistry, 2014, 67, 49.	0.9	1
131	Study of electrical conductivity response upon formation of ice and gas hydrates from salt solutions by a second generation high pressure electrical conductivity probe. Review of Scientific Instruments, 2014, 85, 115101.	1.3	8
132	Formation of Ice, Tetrahydrofuran Hydrate, and Methane/Propane Mixed Gas Hydrates in Strong Monovalent Salt Solutions. Energy & Fuels, 2014, 28, 6877-6888.	5.1	46
133	Nanobubble formation on a warmer substrate. Soft Matter, 2014, 10, 7857-7864.	2.7	53
134	Surfactant-mediated formation of polymeric microlenses from interfacial microdroplets. Soft Matter, 2014, 10, 957-964.	2.7	22
135	Spatial organization of surface nanobubbles and its implications in their formation process. Soft Matter, 2014, 10, 942.	2.7	26
136	Superâ€Soft Hydrogel Particles with Tunable Elasticity in a Microfluidic Blood Capillary Model. Advanced Materials, 2014, 26, 7295-7299.	21.0	107
137	Microwetting of Supported Graphene on Hydrophobic Surfaces Revealed by Polymerized Interfacial Femtodroplets. Langmuir, 2014, 30, 10043-10049.	3.5	16
138	From Nanodroplets by the Ouzo Effect to Interfacial Nanolenses. Langmuir, 2014, 30, 12270-12277.	3.5	26
139	Interfacial Nanobubbles Are Leaky: Permeability of the Gas/Water Interface. ACS Nano, 2014, 8, 6193-6201.	14.6	83
140	Interfacial nanodroplets guided construction of hierarchical Au, Au-Pt and Au-Pd particles as excellent catalysts. Scientific Reports, 2014, 4, 4849.	3.3	43
141	Deactivation of Microbubble Nucleation Sites by Alcohol–Water Exchange. Langmuir, 2013, 29, 9979-9984.	3.5	16
142	Controlling the assembly of graphene oxide by an electrolyte-assisted approach. Nanoscale, 2013, 5, 6458.	5.6	10
143	Adsorbed emulsion droplets: capping agents for in situ heterogeneous engineering of particle surfaces. Chemical Communications, 2013, 49, 11563.	4.1	12
144	Two-Dimensional Mesoporous Carbon Nanosheets and Their Derived Graphene Nanosheets: Synthesis and Efficient Lithium Ion Storage. Journal of the American Chemical Society, 2013, 135, 1524-1530.	13.7	591

#	Article	IF	CITATIONS
145	Transforming Growth Factor–β–Induced Differentiation of Airway Smooth Muscle Cells Is Inhibited by Fibroblast Growth Factor–2. American Journal of Respiratory Cell and Molecular Biology, 2013, 48, 346-353.	2.9	45
146	Stability of Interfacial Nanobubbles. Langmuir, 2013, 29, 1017-1023.	3.5	189
147	Formation of Regular Stripes of Chemically Converted Graphene on Hydrophilic Substrates. ACS Applied Materials & Interfaces, 2013, 5, 6176-6181.	8.0	3
148	From transient nanodroplets to permanent nanolenses. Soft Matter, 2012, 8, 4314.	2.7	52
149	Stitching Chemically Converted Graphene on Solid Surfaces by Solvent Evaporation. ACS Applied Materials & Interfaces, 2012, 4, 6443-6449.	8.0	10
150	Effects of Surfactants on the Formation and the Stability of Interfacial Nanobubbles. Langmuir, 2012, 28, 10471-10477.	3.5	77
151	Assembling of graphene oxide in an isolated dissolving droplet. Soft Matter, 2012, 8, 11249.	2.7	15
152	Highly Ordered Mesoporous Silica Films with Perpendicular Mesochannels by a Simple Stöberâ€Solution Growth Approach. Angewandte Chemie - International Edition, 2012, 51, 2173-2177.	13.8	291
153	Response of interfacial nanobubbles to ultrasound irradiation. Soft Matter, 2011, 7, 265-269.	2.7	53
154	Evaporation-induced flattening and self-assembly of chemically converted graphene on a solid surface. Soft Matter, 2011, 7, 8745.	2.7	24
155	Influence of Dissolved Atmospheric Gases on the Spontaneous Emulsification of Alkaneâ^'Ethanolâ~'Water Systems. Journal of Physical Chemistry C, 2011, 115, 8768-8774.	3.1	16
156	Effects of Solvency and Interfacial Nanobubbles on Surface Forces and Bubble Attachment at Solid Surfaces. Langmuir, 2011, 27, 2484-2491.	3.5	47
157	Molecular Expansion of an Individual Coiled DNA on a Graphite Surface. Langmuir, 2011, 27, 2405-2410.	3.5	7
158	Controllable corrugation of chemically converted graphene sheets in water and potential application for nanofiltration. Chemical Communications, 2011, 47, 5810.	4.1	296
159	Interfacial Gaseous States on Crystalline Surfaces. Journal of Physical Chemistry C, 2011, 115, 736-743.	3.1	38
160	Evaluation of the Radial Deformability of Poly(dG)â^'Poly(dC) DNA and G4-DNA Using Vibrating Scanning Polarization Force Microscopy. Langmuir, 2010, 26, 7523-7528.	3.5	8
161	Formation of Nanodents by Deposition of Nanodroplets at the Polymerâ^'Liquid Interface. Langmuir, 2010, 26, 4776-4781.	3.5	17
162	The length scales for stable gas nanobubbles at liquid/solid surfaces. Soft Matter, 2010, 6, 4515.	2.7	65

#	Article	IF	CITATIONS
163	Do Stable Nanobubbles Exist in Mixtures of Organic Solvents and Water?. Journal of Physical Chemistry B, 2010, 114, 6962-6967.	2.6	95
164	Nanoscale Multiple Gaseous Layers on a Hydrophobic Surface. Langmuir, 2009, 25, 8860-8864.	3.5	74
165	Nanobubbles at the Interface between Water and a Hydrophobic Solid. Langmuir, 2008, 24, 4756-4764.	3.5	315
166	Quartz crystal microbalance study of the interfacial nanobubbles. Physical Chemistry Chemical Physics, 2008, 10, 6842.	2.8	86
167	Thermodynamic Stability of Interfacial Gaseous States. Journal of Physical Chemistry B, 2008, 112, 13671-13675.	2.6	59
168	Interfacial Oil Droplets. Langmuir, 2008, 24, 110-115.	3.5	51
169	Photocatalytic Induction of Nanobubbles on TiO ₂ Surfaces. Journal of Physical Chemistry C, 2008, 112, 4029-4032.	3.1	27
170	Formation of Interfacial Nanodroplets through Changes in Solvent Quality. Langmuir, 2007, 23, 12478-12480.	3.5	66
171	Analysis of the Gas States at a Liquid/Solid Interface Based on Interactions at the Microscopic Level. Journal of Physical Chemistry B, 2007, 111, 9325-9329.	2.6	13
172	Detection of Novel Gaseous States at the Highly Oriented Pyrolytic Graphiteâ^'Water Interface. Langmuir, 2007, 23, 1778-1783.	3.5	148
173	A Nanoscale Gas State. Physical Review Letters, 2007, 98, 136101.	7.8	228
174	In situ AFM observation of BSA adsorption on HOPG with nanobubble. Science Bulletin, 2007, 52, 1913-1919.	1.7	37
175	Physical Properties of Nanobubbles on Hydrophobic Surfaces in Water and Aqueous Solutions. Langmuir, 2006, 22, 5025-5035.	3.5	380
176	Removal of Induced Nanobubbles from Water/Graphite Interfaces by Partial Degassing. Langmuir, 2006, 22, 9238-9243.	3.5	111
177	Electrochemically Controlled Formation and Growth of Hydrogen Nanobubbles. Langmuir, 2006, 22, 8109-8113.	3.5	197
178	Nanobubbles influence on BSA adsorption on mica surface. Surface and Interface Analysis, 2006, 38, 990-995.	1.8	51
179	Effect of temperature on the morphology of nanobubbles at mica/water interface. Chinese Physics B, 2005, 14, 1774-1778.	1.3	39