List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5232171/publications.pdf Version: 2024-02-01

ΚΛΙΓΙ ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications. Progress in Materials Science, 2014, 60, 208-337.	16.0	1,086
2	Nanoenergetic Materials for MEMS: A Review. Journal of Microelectromechanical Systems, 2007, 16, 919-931.	1.7	416
3	Development of micro power generators – A review. Applied Energy, 2011, 88, 1-16.	5.1	341
4	A hydrolysis-hydrothermal route for the synthesis of ultrathin LiAlO ₂ -inlaid LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ as a high-performance cathode material for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 894-904.	5.2	286
5	Anion and cation substitution in transition-metal oxides nanosheets for high-performance hybrid supercapacitors. Nano Energy, 2019, 57, 22-33.	8.2	279
6	Nanostructured Energetic Composites: Synthesis, Ignition/Combustion Modeling, and Applications. ACS Applied Materials & Interfaces, 2014, 6, 3058-3074.	4.0	249
7	An Aqueous Znâ€ion Hybrid Supercapacitor with High Energy Density and Ultrastability up to 80 000 Cycles. Advanced Energy Materials, 2019, 9, 1902915.	10.2	244
8	Hierarchical Mesoporous Zinc–Nickel–Cobalt Ternary Oxide Nanowire Arrays on Nickel Foam as High-Performance Electrodes for Supercapacitors. ACS Applied Materials & Interfaces, 2015, 7, 26512-26521.	4.0	234
9	Three-dimensional hierarchical Co3O4/CuO nanowire heterostructure arrays on nickel foam for high-performance lithium ion batteries. Nano Energy, 2014, 6, 19-26.	8.2	230
10	Design and understanding of dendritic mixed-metal hydroxide nanosheets@N-doped carbon nanotube array electrode for high-performance asymmetric supercapacitors. Energy Storage Materials, 2019, 16, 632-645.	9.5	225
11	Smart construction of three-dimensional hierarchical tubular transition metal oxide core/shell heterostructures with high-capacity and long-cycle-life lithium storage. Nano Energy, 2015, 12, 437-446.	8.2	220
12	Lithiophilic Cuâ€CuOâ€Ni Hybrid Structure: Advanced Current Collectors Toward Stable Lithium Metal Anodes. Advanced Materials, 2018, 30, 1705830.	11.1	217
13	Robust erythrocyte-like Fe2O3@carbon with yolk-shell structures as high-performance anode for lithium ion batteries. Chemical Engineering Journal, 2018, 347, 563-573.	6.6	179
14	High-performance hybrid supercapacitors based on self-supported 3D ultrathin porous quaternary Zn-Ni-Al-Co oxide nanosheets. Nano Energy, 2016, 28, 475-485.	8.2	173
15	Polyvinylpyrrolidone-Induced Uniform Surface-Conductive Polymer Coating Endows Ni-Rich LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ with Enhanced Cyclability for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 12594-12604.	4.0	173
16	Approaching the ideal elastic strain limit in silicon nanowires. Science Advances, 2016, 2, e1501382.	4.7	169
17	A facile method to improve the high rate capability of Co3O4 nanowire array electrodes. Nano Research, 2010, 3, 895-901.	5.8	165
18	Facile general strategy toward hierarchical mesoporous transition metal oxides arrays on three-dimensional macroporous foam with superior lithium storage properties. Nano Energy, 2015, 13, 77-91.	8.2	164

#	Article	IF	CITATIONS
19	Sulfur impregnated N, P co-doped hierarchical porous carbon as cathode for high performance Li-S batteries. Journal of Power Sources, 2017, 341, 165-174.	4.0	157
20	A Nano Initiator Realized by Integrating Al/CuO-Based Nanoenergetic Materials With a Au/Pt/Cr Microheater. Journal of Microelectromechanical Systems, 2008, 17, 832-836.	1.7	149
21	Direct growth of urchin-like ZnCo2O4 microspheres assembled from nanowires on nickel foam as high-performance electrodes for supercapacitors. Electrochimica Acta, 2015, 169, 202-209.	2.6	149
22	Core–Shell Structured Nanoenergetic Materials: Preparation and Fundamental Properties. Advanced Materials, 2020, 32, e2001291.	11.1	144
23	Synthesis of large-area and aligned copper oxide nanowires from copper thin film on silicon substrate. Nanotechnology, 2007, 18, 275607.	1.3	130
24	A MEMS-based solid propellant microthruster with Au/Ti igniter. Sensors and Actuators A: Physical, 2005, 122, 113-123.	2.0	123
25	Development of a nano-Alâ^•CuO based energetic material on silicon substrate. Applied Physics Letters, 2007, 91, .	1.5	117
26	Fast response resistive humidity sensitivity of polyimide/multiwall carbon nanotube composite films. Sensors and Actuators B: Chemical, 2011, 152, 99-106.	4.0	117
27	Interfacial intermetallic growth and mechanical properties of carbon nanotubes reinforced Sn3.5Ag0.5Cu solder joint under current stressing. Journal of Alloys and Compounds, 2014, 595, 92-102.	2.8	115
28	Fabrication of plate-like MnO2 with excellent cycle stability for supercapacitor electrodes. Electrochimica Acta, 2018, 291, 249-255.	2.6	108
29	Oxygen redox activity with small voltage hysteresis in Na0.67Cu0.28Mn0.72O2 for sodium-ion batteries. Energy Storage Materials, 2020, 28, 300-306.	9.5	105
30	Facile large-scale synthesis of vertically aligned CuO nanowires on nickel foam: growth mechanism and remarkable electrochemical performance. Journal of Materials Chemistry A, 2014, 2, 3865.	5.2	104
31	Fabrication and understanding of Cu ₃ Si-Si@carbon@graphene nanocomposites as high-performance anodes for lithium-ion batteries. Nanoscale, 2018, 10, 22203-22214.	2.8	103
32	Hybrid Reduced Graphene Oxide Nanosheet Supported Mn–Ni–Co Ternary Oxides for Aqueous Asymmetric Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 19114-19123.	4.0	100
33	Activated Microporous Carbon Derived from Almond Shells for High Energy Density Asymmetric Supercapacitors. ACS Applied Materials & amp; Interfaces, 2016, 8, 15288-15296.	4.0	99
34	Seed-assisted smart construction of high mass loading Ni–Co–Mn hydroxide nanoflakes for supercapacitor applications. Journal of Materials Chemistry A, 2017, 5, 16776-16785.	5.2	93
35	Research progress and future aspects: Metal selenides as effective electrodes. Energy Storage Materials, 2022, 47, 13-43.	9.5	92
36	Integration of nano-Al with Co3O4 nanorods to realize high-exothermic core–shell nanoenergetic materials on a silicon substrate. Combustion and Flame, 2012, 159, 2202-2209.	2.8	91

#	Article	IF	CITATIONS
37	Heat transfer and entropy generation analyses in a channel partially filled with porous media using local thermal non-equilibrium model. Energy, 2015, 82, 922-938.	4.5	88
38	Surfaceâ€Engineered Black Niobium Oxide@Graphene Nanosheets for Highâ€Performance Sodiumâ€∤Potassiumâ€Ion Full Batteries. Small, 2019, 15, e1901272.	5.2	88
39	An oriented Ni–Co-MOF anchored on solution-free 1D CuO: a p–n heterojunction for supercapacitive energy storage. Journal of Materials Chemistry A, 2021, 9, 17790-17800.	5.2	86
40	Fabrication, modeling and testing of a thin film Au/Ti microheater. International Journal of Thermal Sciences, 2007, 46, 580-588.	2.6	84
41	Theoretical study on photocatalytic oxidation of VOCs using nano-TiO2 photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 188, 65-73.	2.0	76
42	Mesoporous ZnCo 2 O 4 microspheres composed of ultrathin nanosheets cross-linked with metallic NiSi x nanowires on Ni foam as anodes for lithium ion batteries. Nano Energy, 2014, 10, 245-258.	8.2	76
43	Highly Exothermic and Superhydrophobic Mg/Fluorocarbon Core/Shell Nanoenergetic Arrays. ACS Applied Materials & Interfaces, 2014, 6, 10497-10505.	4.0	76
44	A comparative study of longitudinal fins of rectangular, trapezoidal and concave parabolic profiles with multiple nonlinearities. Energy, 2013, 51, 243-256.	4.5	75
45	Effect of graphene doping on microstructural and mechanical properties of Sn–8Zn–3Bi solder joints together with electromigration analysis. Journal of Alloys and Compounds, 2013, 580, 162-171.	2.8	72
46	Nitrogen-Doped Sponge Ni Fibers as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. Nano-Micro Letters, 2019, 11, 21.	14.4	70
47	Integration of CuO nanosheets to Zn-Ni-Co oxide nanowire arrays for energy storage applications. Chemical Engineering Journal, 2021, 413, 127570.	6.6	70
48	3D hierarchically porous zinc–nickel–cobalt oxide nanosheets grown on Ni foam as binder-free electrodes for electrochemical energy storage. Journal of Materials Chemistry A, 2015, 3, 24022-24032.	5.2	67
49	Templated and Catalytic Fabrication of N-Doped Hierarchical Porous Carbon–Carbon Nanotube Hybrids as Host for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2017, 9, 33876-33886.	4.0	66
50	Integrating Al with NiO nano honeycomb to realize an energetic material on silicon substrate. Applied Physics A: Materials Science and Processing, 2009, 94, 957-962.	1.1	65
51	Development of a low-temperature co-fired ceramic solid propellant microthruster. Journal of Micromechanics and Microengineering, 2005, 15, 944-952.	1.5	64
52	High entropy alloys as electrode material for supercapacitors: A review. Journal of Energy Storage, 2021, 44, 103405.	3.9	63
53	High-performance lithium-rich layered oxide materials: Effects of chelating agents on microstructure and electrochemical properties. Electrochimica Acta, 2015, 174, 446-455.	2.6	62
54	Entropy generation in thermal systems with solid structures – A concise review. International Journal of Heat and Mass Transfer, 2016, 97, 917-931.	2.5	62

#	Article	IF	CITATIONS
55	In situ preparation of explosive embedded CuO/Al/CL20 nanoenergetic composite with enhanced reactivity. Chemical Engineering Journal, 2018, 354, 885-895.	6.6	62
56	Boron-Doped Trimetallic Cu-Ni-Co Oxide Nanoneedles for Supercapacitor Application. ACS Applied Nano Materials, 2021, 4, 129-141.	2.4	61
57	Development of a solid propellant microthruster with chamber and nozzle etched on a wafer surface. Journal of Micromechanics and Microengineering, 2004, 14, 785-792.	1.5	60
58	CuO/Mg/fluorocarbon sandwich-structure superhydrophobic nanoenergetic composite with anti-humidity property. Chemical Engineering Journal, 2015, 266, 163-170.	6.6	60
59	Growth of Hierarchical 3D Mesoporous NiSi _{<i>x</i>} /NiCo ₂ O ₄ Core/Shell Heterostructures on Nickel Foam for Lithiumâ€lon Batteries. ChemSusChem, 2014, 7, 2325-2334.	3.6	58
60	Heat transfer and second law analyses of forced convection in a channel partially filled by porous media and featuring internal heat sources. Energy, 2015, 93, 106-127.	4.5	58
61	Converting Corncob to Activated Porous Carbon for Supercapacitor Application. Nanomaterials, 2018, 8, 181.	1.9	57
62	Development of vertically aligned trimetallic Mg-Ni-Co oxide grass-like nanostructure for high-performance energy storage applications. Journal of Colloid and Interface Science, 2021, 582, 782-792.	5.0	57
63	Effect of nanostructures on the exothermic reaction and ignition of Al/CuOx based energetic materials. Journal of Materials Science, 2012, 47, 1296-1305.	1.7	56
64	Sub 30 nm silver nanowire synthesized using KBr as co-nucleant through one-pot polyol method for optoelectronic applications. Organic Electronics, 2015, 26, 380-385.	1.4	55
65	Facile Green In Situ Synthesis of Mg/CuO Core/Shell Nanoenergetic Arrays with a Superior Heat-Release Property and Long-Term Storage Stability. ACS Applied Materials & Interfaces, 2013, 5, 7641-7646.	4.0	53
66	Turning indium oxide into high-performing electrode materials via cation substitution strategy: Preserving single crystalline cubic structure of 2D nanoflakes towards energy storage devices. Journal of Power Sources, 2020, 480, 228873.	4.0	53
67	Fast deflagration to detonation transition of energetic material based on a quasi-core/shell structured nanothermite composite. Composites Science and Technology, 2015, 107, 113-119.	3.8	52
68	Hollow nano- and microstructures: Mechanism, composition, applications, and factors affecting morphology and performance. Coordination Chemistry Reviews, 2022, 458, 214429.	9.5	52
69	Characterization and electrochemical performance of lithium-active titanium dioxide inlaid LiNi0.5Co0.2Mn0.3O2 material prepared by lithium residue-assisted method. Journal of Alloys and Compounds, 2015, 638, 77-82.	2.8	51
70	Generation of entropy and forced convection of heat in a conduit partially filled with porous media – Local thermal non-equilibrium and exothermicity effects. Applied Thermal Engineering, 2016, 106, 518-536.	3.0	50
71	Convective–radiative radial fins with convective base heating and convective–radiative tip cooling: Homogeneous and functionally graded materials. Energy Conversion and Management, 2013, 74, 366-376.	4.4	49
72	Mesoporous aluminium manganese cobalt oxide with pentahedron structures for energy storage devices. Journal of Materials Chemistry A, 2019, 7, 18417-18427.	5.2	49

#	Article	IF	CITATIONS
73	MEMS-Based Solid Propellant Microthruster Design, Simulation, Fabrication, and Testing. Journal of Microelectromechanical Systems, 2004, 13, 165-175.	1.7	48
74	Improved lithium ion battery performance by mesoporous Co3O4 nanosheets grown on self-standing NiSix nanowires on nickel foam. Journal of Materials Chemistry A, 2014, 2, 8483.	5.2	48
75	Effects of nano-Ag on the combustion process of Al–CuO metastable intermolecular composite. Applied Thermal Engineering, 2014, 62, 732-737.	3.0	46
76	Hierarchical Porous Acetylene Black/ZnFe2O4@Carbon Hybrid Materials with High Capacity and Robust Cycling Performance for Li-ion Batteries. Electrochimica Acta, 2016, 187, 584-592.	2.6	46
77	Theoretical and experimental studies of impacts of heat shields on heat pipe evacuated tube solar collector. Renewable Energy, 2019, 138, 999-1009.	4.3	46
78	Recent advances in oriented metal–organic frameworks for supercapacitive energy storage. Journal of Materials Chemistry A, 2022, 10, 4475-4488.	5.2	46
79	Local and CMOS-compatible synthesis of CuO nanowires on a suspended microheater on a silicon substrate. Nanotechnology, 2010, 21, 235602.	1.3	45
80	Sputtering graphite coating to improve the elevated-temperature cycling ability of the LiMn ₂ O ₄ electrode. Physical Chemistry Chemical Physics, 2014, 16, 16021-16029.	1.3	45
81	Binder-free trimetallic phosphate nanosheets as an electrode: Theoretical and experimental investigation. Journal of Power Sources, 2021, 513, 230556.	4.0	45
82	Precise Determination of the Threshold Diameter for a Single-Walled Carbon Nanotube To Collapse. ACS Nano, 2014, 8, 9657-9663.	7.3	43
83	Comparative study of ternary metal chalcogenides (MX; M= Zn–Co–Ni; X= S, Se, Te): Formation process, charge storage mechanism and hybrid supercapacitor. Journal of Power Sources, 2022, 534, 231414.	4.0	43
84	A Scalable Approach for Dendrite-Free Alkali Metal Anodes via Room-Temperature Facile Surface Fluorination. ACS Applied Materials & Interfaces, 2019, 11, 4962-4968.	4.0	42
85	Facile synthesis, growth mechanism and reversible superhydrophobic and superhydrophilic properties of non-flaking CuO nanowires grown from porous copper substrates. Nanotechnology, 2013, 24, 065602.	1.3	40
86	A graphite functional layer covering the surface of LiMn2O4 electrode to improve its electrochemical performance. Electrochemistry Communications, 2013, 36, 6-9.	2.3	40
87	Redox of Dual-Radical Intermediates in a Methylene-Linked Covalent Triazine Framework for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 514-521.	4.0	40
88	Extra Sodiation Sites in Hard Carbon for High Performance Sodium Ion Batteries. Small Methods, 2021, 5, e2100580.	4.6	40
89	Hierarchical Doping Engineering with Active/Inert Dual Elements Stabilizes LiCoO ₂ to 4.6ÂV. Advanced Energy Materials, 2022, 12, .	10.2	39
90	Defect-engineered vanadium trioxide nanofiber bundle@graphene hybrids for high-performance all-vanadate Na-ion and K-ion full batteries. Journal of Materials Chemistry A, 2019, 7, 19581-19588.	5.2	38

#	Article	IF	CITATIONS
91	Fluorinated Carbonate Electrolyte with Superior Oxidative Stability Enables Longâ€Term Cycle Stability of Na _{2/3} Ni _{1/3} Mn _{2/3} O ₂ Cathodes in Sodiumâ€Ion Batteries. Advanced Energy Materials, 2021, 11, 2002737.	10.2	37
92	Grapheneâ€Encapsulated Nanosheetâ€Assembled Zinc–Nickel–Cobalt Oxide Microspheres for Enhanced Lithium Storage. ChemSusChem, 2016, 9, 186-196.	3.6	35
93	Formation mechanism of overlapping grain boundaries in graphene chemical vapor deposition growth. Chemical Science, 2017, 8, 2209-2214.	3.7	35
94	Zn–Co-MOF on solution-free CuO nanowires for flexible hybrid energy storage devices. Materials Today Physics, 2022, 23, 100655.	2.9	35
95	In Situ Synthesis of CuO and Cu Nanostructures with Promising Electrochemical and Wettability Properties. Small, 2014, 10, 935-943.	5.2	34
96	Temperature distribution, local and total entropy generation analyses in MHD porous channels with thick walls. Energy, 2015, 87, 540-554.	4.5	34
97	Lithiophilicity conversion of the Cu surface through facile thermal oxidation: boosting a stable Li–Cu composite anode through melt infusion. Journal of Materials Chemistry A, 2019, 7, 5726-5732.	5.2	34
98	Synthesis of NiO nanowalls by thermal treatment of Ni film deposited onto a stainless steel substrate. Nanotechnology, 2008, 19, 155605.	1.3	30
99	Pressure loss and compensation in the combustion process of Al–CuO nanoenergetics on a microheater chip. Combustion and Flame, 2014, 161, 2975-2981.	2.8	30
100	Self-conversion templated fabrication of sulfur encapsulated inside the N-doped hollow carbon sphere and 3D graphene frameworks for high-performance lithium–sulfur batteries. Electrochimica Acta, 2019, 295, 900-909.	2.6	29
101	Regulating the radical intermediates by conjugated units in covalent organic frameworks for optimized lithium ion storage. Journal of Energy Chemistry, 2022, 69, 428-433.	7.1	29
102	Performance Prediction of a Novel Solid-Propellant Microthruster. Journal of Propulsion and Power, 2006, 22, 56-63.	1.3	28
103	Classical entropy generation analysis in cooled homogenous and functionally graded material slabs with variation of internal heat generation with temperature, and convective–radiative boundary conditions. Energy, 2014, 65, 387-397.	4.5	28
104	Energetic composites based on nano-Al and energetic coordination polymers (ECPs): The "father-son― effect of ECPs. Chemical Engineering Journal, 2020, 392, 123719.	6.6	28
105	Dilute Aqueousâ€Aprotic Hybrid Electrolyte Enabling a Wide Electrochemical Window through Solvation Structure Engineering. Advanced Materials, 2021, 33, e2102390.	11.1	28
106	MXene in core–shell structures: research progress and future prospects. Journal of Materials Chemistry A, 2022, 10, 14247-14272.	5.2	28
107	Stabilizing the oxygen lattice and reversible oxygen redox in Na-deficient cathode oxides. Journal of Power Sources, 2019, 439, 227086.	4.0	27
108	Investigation on the ignition of a MEMS solid propellant microthruster before propellant combustion. Journal of Micromechanics and Microengineering, 2007, 17, 322-332.	1.5	26

#	Article	IF	CITATIONS
109	Redox of naphthalenediimide radicals in a 3D polyimide for stable Li-ion batteries. Chemical Communications, 2021, 57, 7810-7813.	2.2	26
110	Heat transfer and thermodynamic performance of convective–radiative cooling double layer walls with temperature-dependent thermal conductivity and internal heat generation. Energy Conversion and Management, 2015, 89, 12-23.	4.4	25
111	Recent progress in trimetallic/ternary-metal oxides nanostructures: Misinterpretation/misconception of electrochemical data and devices. Applied Materials Today, 2022, 26, 101297.	2.3	23
112	Effects of lithium-active manganese trioxide coating on the structural and electrochemical characteristics of LiNi0.5Co0.2Mn0.3O2 as cathode materials for lithium ion battery. Journal of Alloys and Compounds, 2015, 650, 684-691.	2.8	22
113	Nanoforest of hierarchical core/shell CuO@NiCo ₂ O ₄ nanowire heterostructure arrays on nickel foam for high-performance supercapacitors. RSC Advances, 2016, 6, 63905-63914.	1.7	22
114	Additiveâ€Free Energetic Film Based on Graphene Oxide and Nanoscale Energetic Coordination Polymer for Transient Microchip. Advanced Functional Materials, 2021, 31, 2103199.	7.8	22
115	Highly stable 3D hierarchical manganese sulfide multi-layer nanoflakes with excellent electrochemical performances for supercapacitor electrodes. Journal of Alloys and Compounds, 2022, 894, 162390.	2.8	22
116	Phosphorus containing layered quadruple hydroxide electrode materials on lab waste recycled flexible current collector. Journal of Colloid and Interface Science, 2022, 609, 566-574.	5.0	21
117	Temperature distribution and classical entropy generation analyses in an asymmetric cooling composite hollow cylinder with temperature-dependent thermal conductivity and internal heat generation. Energy, 2014, 73, 484-496.	4.5	20
118	Modified KBBF-like Material for Energy Storage Applications: ZnNiBO ₃ (OH) with Enhanced Cycle Life. ACS Applied Materials & Interfaces, 2022, 14, 8025-8035.	4.0	20
119	In Situ Synthesized MEMS Compatible Energetic Arrays Based on Energetic Coordination Polymer and Nano-Al with Tunable Properties. ACS Applied Materials & Interfaces, 2020, 12, 30740-30749.	4.0	19
120	Glycerol-mediated synthesis of copper-doped zinc sulfide with ultrathin nanoflakes for flexible energy electrode materials. Journal of Alloys and Compounds, 2022, 919, 165701.	2.8	18
121	Effects of different types of defects on ignition mechanisms in shocked β-cyclotetramethylene tetranitramine crystals: A molecular dynamics study based on ReaxFF-Ig force field. Journal of Applied Physics, 2019, 125, .	1.1	17
122	Multi-dimensional dual-phase-lag heat conduction in cylindrical coordinates: Analytical and numerical solutions. International Journal of Heat and Mass Transfer, 2014, 78, 960-966.	2.5	15
123	An extremely superhydrophobic and intrinsically stable Si/fluorocarbon energetic composite based on upright nano/submicron-sized Si wire arrays. RSC Advances, 2015, 5, 106098-106106.	1.7	15
124	Temperature and Entropy Generation Analyses Between and Inside Rotating Cylinders Using Copper–Water Nanofluid. Journal of Heat Transfer, 2015, 137, .	1.2	14
125	Controlled facile synthesis, growth mechanism, and exothermic properties of large-area Co3O4 nanowalls and nanowires on silicon substrates. Journal of Applied Physics, 2012, 112, .	1.1	13
126	Temperature distribution, local and total entropy generation analyses in asymmetric cooling composite geometries with multiple nonlinearities: Effect of imperfect thermal contact. Energy, 2014, 78, 218-234.	4.5	13

#	Article	IF	CITATIONS
127	Analytical solution for transient temperature and thermal stresses within convective multilayer disks with time-dependent internal heat generation, Part I: Methodology. Journal of Thermal Stresses, 2016, 39, 398-413.	1.1	13
128	Exploring the solid-state interfacial reaction of Al/Fe2O3 nanothermites by thermal analysis. Journal of Materials Science, 2019, 54, 4115-4123.	1.7	12
129	Controlling the size of silver nanowires through one-pot polyol method with trace halide and its effect on kinetic process. Materials Research Express, 2017, 4, 075052.	0.8	11
130	Multi-physics system modeling of a pneumatic micro actuator. Sensors and Actuators A: Physical, 2008, 141, 489-498.	2.0	10
131	Aligned three-dimensional prismlike magnesium nanostructures realized onto silicon substrate. Applied Physics Letters, 2008, 92, 063123.	1.5	10
132	Study of microstructure evolution in novel Sn–Zn/Cu bi-layer and Cu/Sn–Zn/Cu sandwich structures with nanoscale thickness for 3D packaging interconnection. Microelectronic Engineering, 2014, 122, 52-58.	1.1	10
133	Yolk–shell structured metal oxide@carbon nanoring anode boosting performance of lithium-ion batteries. New Journal of Chemistry, 2019, 43, 16148-16155.	1.4	10
134	Comparison study of carbon clusters formation during thermal decomposition of 1,3,5-triamino-2,4,6-trinitrobenzene and benzotrifuroxan: a ReaxFF based sequential molecular dynamics simulation. Physical Chemistry Chemical Physics, 2020, 22, 5154-5162.	1.3	10
135	Hydrogenation of bilayer graphene: A small twist makes a big difference. Nano Research, 2015, 8, 3887-3897.	5.8	9
136	Si Wire Supported MnO2/Al/Fluorocarbon 3D Core/Shell Nanoenergetic Arrays with Long-Term Storage Stability. Scientific Reports, 2017, 7, 6678.	1.6	9
137	Oxidation State as a Descriptor in Oxygen Reduction Electrocatalysis. CCS Chemistry, 2022, 4, 3587-3598.	4.6	9
138	Solar Hydrogen Generation from Water Splitting Using ZnO/CuO Hetero Nanostructures. Energy Procedia, 2014, 61, 345-348.	1.8	8
139	First and second thermodynamic laws analyses between and inside two rotating solid cylindrical geometries with magnetohydrodynamic flow. International Journal of Heat and Mass Transfer, 2015, 89, 760-769.	2.5	8
140	Analytical solution for transient temperature and thermal stresses within convective multilayer disks with time-dependent internal heat generation, Part II: Applications. Journal of Thermal Stresses, 2016, 39, 414-436.	1.1	8
141	Preparation of Cyclotrimethylenetrinitramine opper Oxide Coreâ€Shell Particles and Their Thermal Decomposition Kinetics. Propellants, Explosives, Pyrotechnics, 2019, 44, 1368-1374.	1.0	8
142	Coupling a Three-Dimensional Nanopillar and Robust Film to Guide Li-Ion Flux for Dendrite-Free Lithium Metal Anodes. ACS Applied Materials & Interfaces, 2021, 13, 45416-45425.	4.0	8
143	Single copper sites dispersed on defective TiO2â´`x as a synergistic oxygen reduction reaction catalyst. Journal of Chemical Physics, 2021, 154, 034705.	1.2	7
144	Revealing the catalytic pathway of a quinone-mediated oxygen reduction reaction in aprotic Li–O ₂ batteries. Chemical Communications, 2022, 58, 1025-1028.	2.2	7

#	Article	IF	CITATIONS
145	NiO Nanostructured Honeycomb Realized by Annealing Ni Film Deposited on Silicon. Journal of Nanoscience and Nanotechnology, 2008, 8, 5903-5907.	0.9	5
146	CuO Nanowires Grown from Cu Film Heated Under a N ₂ /O ₂ Flow. Journal of Nanoscience and Nanotechnology, 2009, 9, 1418-1422.	0.9	5
147	Lithiophilicity conversion of carbon paper with uniform Cu2+1O coating: Boosting stable Li-Cu2+1O-CP composite anode through melting infusion. Chemical Engineering Journal, 2020, 388, 124238.	6.6	5
148	Realization of aligned three-dimensional single-crystal chromium nanostructures by thermal evaporation. Applied Physics A: Materials Science and Processing, 2010, 100, 1049-1055.	1.1	4
149	Reaction violence difference revealed by reactive molecular dynamics: Comparison of the thermal decomposition of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine and benzotrifuroxan. Chemical Physics Letters, 2020, 739, 136861.	1.2	4
150	A wireless addressing interface circuitry for microthruster array applications. Aircraft Engineering and Aerospace Technology, 2007, 79, 628-634.	0.8	3
151	Comment on "Series solution of convective radiative conduction equation of the nonlinear fin with temperature dependent thermal conductivity―by Sobhan Mosayebidorcheh and Taha Mosayebidorcheh, [Int. J. Heat Mass Transfer] 55 (2012) 6589–6594. International Journal of Heat and Mass Transfer, 2013, 64. 986-987.	2.5	3
152	Entropy Generation Analysis in Convective-radiative Cooling Composite Walls with Temperature-dependent Thermal Conductivity and Internal Heat Generation. Energy Procedia, 2014, 61, 463-467.	1.8	3
153	Graphene oxide induced nanoscale energetic coordination polymer with self-sustaining combustion ability. Energetic Materials Frontiers, 2020, 1, 51-58.	1.3	3
154	Micro/Nano Functional Manufacturing: From Microthruster to Nano Energetic Material to Micro/Nano Initiator. Key Engineering Materials, 0, 426-427, 240-244.	0.4	2
155	Thermoelastic analysis for freestanding micro-hotplates for micro/nano gas sensors. , 2013, , .		2
156	Aluminized Energetic Coordination Polymers Constructed from Transition Metal Centers (Co, Ni, and) Tj ETQqO	0 0 rgBT /(1.0	Overlock 10 T
157	Study of formaldehyde photocatalytic degradation using nano TiO 2. Proceedings of SPIE, 2007, , .	0.8	1
158	Synthesis of CuO nanowires from porous copper with promising application for nanoenergetic materials. , 2013, , .		1
159	A low temperature co-fired ceramic solid propellant microthruster for micropropulsion applications. , 0, , .		0
160	Graphene-Encapsulated Nanosheet-Assembled Zinc-Nickel-Cobalt Oxide Microspheres for Enhanced Lithium Storage. ChemSusChem, 2016, 9, 128-128.	3.6	0
161	High-Temperature Oxidation Behavior of a Single-Layer IrAl Intermetallic Coating. Oxidation of Metals, 2019, 91, 749-766.	1.0	0
162	Theoretical Investigation on Nano TiO2 Photocatalytic Oxidation of VOCs. , 2007, , .		0

#	Article	IF	CITATIONS
163	Preparation and Energetic Properties of Nanothermites Based on Core–Shell Structure. , 2020, , 45-65.		0