
Julia K Steinberger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5232058/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	The food waste hierarchy as a framework for the management of food surplus and food waste. Journal of Cleaner Production, 2014, 76, 106-115.	4.6	973
2	A good life for all within planetary boundaries. Nature Sustainability, 2018, 1, 88-95.	11.5	883
3	Greenhouse Gas Emissions from Global Cities. Environmental Science & Technology, 2009, 43, 7297-7302.	4.6	581
4	Scientists' warning on affluence. Nature Communications, 2020, 11, 3107.	5.8	503
5	Towards demand-side solutions for mitigating climate change. Nature Climate Change, 2018, 8, 260-263.	8.1	496
6	Methodology for inventorying greenhouse gas emissions from global cities. Energy Policy, 2010, 38, 4828-4837.	4.2	386
7	Global patterns of materials use: A socioeconomic and geophysical analysis. Ecological Economics, 2010, 69, 1148-1158.	2.9	271
8	Large inequality in international and intranational energy footprints between income groups and across consumption categories. Nature Energy, 2020, 5, 231-239.	19.8	266
9	From constraint to sufficiency: The decoupling of energy and carbon from human needs, 1975–2005. Ecological Economics, 2010, 70, 425-433.	2.9	260
10	Considering the normative, systemic and procedural dimensions in indicator-based sustainability assessments in agriculture. Environmental Impact Assessment Review, 2010, 30, 71-81.	4.4	259
11	The political economy of car dependence: A systems of provision approach. Energy Research and Social Science, 2020, 66, 101486.	3.0	240
12	Reducing energy and material flows in cities. Current Opinion in Environmental Sustainability, 2010, 2, 185-192.	3.1	225
13	Providing decent living with minimum energy: A global scenario. Global Environmental Change, 2020, 65, 102168.	3.6	217
14	Conceptual framework for the study of food waste generation and prevention in the hospitality sector. Waste Management, 2016, 49, 326-336.	3.7	216
15	Global bioenergy potentials from agricultural land in 2050: Sensitivity to climate change, diets and yields. Biomass and Bioenergy, 2011, 35, 4753-4769.	2.9	202
16	Discourses of climate delay. Global Sustainability, 2020, 3, .	1.6	201
17	Pathways of human development and carbon emissions embodied in trade. Nature Climate Change, 2012, 2, 81-85.	8.1	187
18	Maintenance and Expansion: Modeling Material Stocks and Flows for Residential Buildings and Transportation Networks in the EU25. Journal of Industrial Ecology, 2015, 19, 538-551.	2.8	174

Julia K Steinberger

#	Article	IF	CITATIONS
19	Energy requirements of consumption: Urban form, climatic and socio-economic factors, rebounds and their policy implications. Energy Policy, 2013, 63, 696-707.	4.2	155
20	A Framework for Decoupling Human Need Satisfaction From Energy Use. Ecological Economics, 2017, 141, 43-52.	2.9	142
21	Demand-side solutions to climate change mitigation consistent with high levels of well-being. Nature Climate Change, 2022, 12, 36-46.	8.1	133
22	Development and Dematerialization: An International Study. PLoS ONE, 2013, 8, e70385.	1.1	118
23	Transitions in pathways of human development and carbon emissions. Environmental Research Letters, 2014, 9, 014011.	2.2	109
24	Urgent need for post-growth climate mitigation scenarios. Nature Energy, 2021, 6, 766-768.	19.8	97
25	A spatially explicit life cycle inventory of the global textile chain. International Journal of Life Cycle Assessment, 2009, 14, 443-455.	2.2	96
26	Assessing the dynamic material criticality of infrastructure transitions: A case of low carbon electricity. Applied Energy, 2014, 123, 378-386.	5.1	95
27	Human wellâ€being and climate change mitigation. Wiley Interdisciplinary Reviews: Climate Change, 2017, 8, e485.	3.6	92
28	Precision Timing of Two Anomalous X-Ray Pulsars. Astrophysical Journal, 1999, 525, L33-L36.	1.6	87
29	Socio-economic conditions for satisfying human needs at low energy use: An international analysis of social provisioning. Global Environmental Change, 2021, 69, 102287.	3.6	82
30	Profiting from negawatts: Reducing absolute consumption and emissions through a performance-based energy economy. Energy Policy, 2009, 37, 361-370.	4.2	81
31	Large Angular Scale Polarization of the Cosmic Microwave Background Radiation and the Feasibility of Its Detection. Astrophysical Journal, 1998, 495, 580-596.	1.6	76
32	Patterns and Causes of Food Waste in the Hospitality and Food Service Sector: Food Waste Prevention Insights from Malaysia. Sustainability, 2019, 11, 6016.	1.6	75
33	Managing Critical Materials with a Technology-Specific Stocks and Flows Model. Environmental Science & Technology, 2014, 48, 1298-1305.	4.6	73
34	Material and Energy Productivity. Environmental Science & amp; Technology, 2011, 45, 1169-1176.	4.6	70
35	International inequality of environmental pressures: Decomposition and comparative analysis. Ecological Indicators, 2016, 62, 163-173.	2.6	70
36	Energy Rebound as a Potential Threat to a Low-Carbon Future: Findings from a New Exergy-Based National-Level Rebound Approach. Energies, 2017, 10, 51.	1.6	69

JULIA K STEINBERGER

#	Article	IF	CITATIONS
37	Towards resource-efficient and service-oriented integrated infrastructure operation. Technological Forecasting and Social Change, 2015, 92, 40-52.	6.2	65
38	Comparison of household consumption and regional production approaches to assess urban energy use and implications for policy. Energy Policy, 2011, 39, 7298-7309.	4.2	64
39	Divergence of Trends in US and UK Aggregate Exergy Efficiencies 1960–2010. Environmental Science & Technology, 2014, 48, 9874-9881.	4.6	58
40	Combining energy efficiency measure approaches and occupancy patterns in building modelling in the UK residential context. Energy and Buildings, 2016, 111, 98-108.	3.1	55
41	Natural and socioeconomic determinants of the embodied human appropriation of net primary production and its relation to other resource use indicators. Ecological Indicators, 2012, 23, 222-231.	2.6	54
42	Understanding China's past and future energy demand: An exergy efficiency and decomposition analysis. Applied Energy, 2015, 155, 892-903.	5.1	54
43	Long-term changes in CO2 emissions in Austria and Czechoslovakia—Identifying the drivers of environmental pressures. Energy Policy, 2011, 39, 535-543.	4.2	52
44	Your money or your life? The carbon-development paradox. Environmental Research Letters, 2020, 15, 044016.	2.2	52
45	Human Scale Energy Services: Untangling a â€~golden thread'. Energy Research and Social Science, 2018, 38, 178-187.	3.0	49
46	From Publications to Public Actions: The Role of Universities in Facilitating Academic Advocacy and Activism in the Climate and Ecological Emergency. Frontiers in Sustainability, 2021, 2, .	1.3	44
47	Roots, Riots, and Radical Change—A Road Less Travelled for Ecological Economics. Sustainability, 2019, 11, 2001.	1.6	43
48	Sustainability solution space of the Swiss milk value added chain. Ecological Economics, 2012, 83, 210-220.	2.9	34
49	Household final energy footprints in Nepal, Vietnam and Zambia: composition, inequality and links to well-being. Environmental Research Letters, 2021, 16, 025011.	2.2	34
50	Global redistribution of income and household energy footprints: a computational thought experiment. Global Sustainability, 2021, 4, .	1.6	34
51	Analyzing Egypt's water footprint based on trade balance and expenditure inequality. Journal of Cleaner Production, 2018, 198, 1526-1535.	4.6	32
52	End-user centred infrastructure operation: towards integrated end-use service delivery. Journal of Cleaner Production, 2016, 132, 229-239.	4.6	24
53	Energy Reduction Through a Deeper Understanding of Household Consumption. Journal of Industrial Ecology, 2011, 15, 31-48.	2.8	22
54	Four agendas for research and policy on emissions mitigation and well-being. Global Sustainability, 2020, 3, .	1.6	22

4

JULIA K STEINBERGER

#	Article	IF	CITATIONS
55	Understanding (and tackling) need satisfier escalation. Sustainability: Science, Practice, and Policy, 2020, 16, 309-325.	1.1	22
56	Final energy footprints in Zambia: Investigating links between household consumption, collective provision, and well-being. Energy Research and Social Science, 2021, 73, 101960.	3.0	18
57	Greenhouse Gas Emissions from Global Cities. Environmental Science & Technology, 2011, 45, 3816-3817.	4.6	16
58	Energizing Sustainable Cities. , 0, , .		16
59	Inequality, poverty and the privatization of essential services: A †̃systems of provision' study of water, energy and local buses in the UK. Competition and Change, 2021, 25, 478-500.	2.9	15
60	Inelastic collision rates of trapped metastable hydrogen. Physical Review A, 2003, 67, .	1.0	12
61	Low Carbon Technology Performance vs Infrastructure Vulnerability: Analysis through the Local and Global Properties Space. Environmental Science & Technology, 2014, 48, 12970-12977.	4.6	9
62	Commentary: Underestimating the Challenges of Avoiding a Ghastly Future. Frontiers in Conservation Science, 2021, 2, .	0.9	9
63	Social Metabolism and Hybrid Structures. Journal of Industrial Ecology, 2011, 15, 642-644.	2.8	6
64	The interrelations of Future Global Bioenergy Potentials, Food demand, and Agricultural Technology. , 2012, , 27-52.		6
65	A corridors and power-oriented perspective on energy-service demand and needs satisfaction. Sustainability: Science, Practice, and Policy, 2021, 17, 162-172.	1.1	5
66	Critical materials for infrastructure: local vs global properties. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2013, 166, 272-280.	0.4	4