
Joe Briscoe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5232007/publications.pdf Version: 2024-02-01

LOF RRISCOF

#	Article	IF	CITATIONS
1	Overcoming Nanoscale Inhomogeneities in Thin-Film Perovskites via Exceptional Post-annealing Grain Growth for Enhanced Photodetection. Nano Letters, 2022, 22, 979-988.	4.5	9
2	Additiveâ€Free, Lowâ€Temperature Crystallization of Stable αâ€FAPbI ₃ Perovskite. Advanced Materials, 2022, 34, e2107850.	11.1	71
3	Efficient harvesting and storage of solar energy of an all-vanadium solar redox flow battery with a MoS ₂ @TiO ₂ photoelectrode. Journal of Materials Chemistry A, 2022, 10, 10484-10492.	5.2	11
4	Controlled Porosity in Ferroelectric BaTiO ₃ Photoanodes. ACS Applied Materials & Interfaces, 2022, 14, 13147-13157.	4.0	9
5	Robust Inorganic Hole Transport Materials for Organic and Perovskite Solar Cells: Insights into Materials Electronic Properties and Device Performance. Solar Rrl, 2021, 5, 2000555.	3.1	34
6	Novel scalable aerosol-assisted CVD route for perovskite solar cells. Materials Advances, 2021, 2, 1606-1612.	2.6	10
7	Ambient Air-Stable CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells Using Dibutylethanolamine as a Morphology Controller. ACS Applied Energy Materials, 2021, 4, 4395-4407.	2.5	6
8	Influence of ZnO nanorod surface chemistry on passivation effect of TiO2 shell coating. Journal Physics D: Applied Physics, 2021, 54, 255107.	1.3	3
9	Aerosol Assisted Solvent Treatment: A Universal Method for Performance and Stability Enhancements in Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2101420.	10.2	21
10	P–N junction-based ZnO wearable textile nanogenerator for biomechanical energy harvesting. Nano Energy, 2021, 85, 105938.	8.2	38
11	Determining Out-of-Plane Hole Mobility in CuSCN via the Time-of-Flight Technique To Elucidate Its Function in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 38499-38507.	4.0	4
12	The role of carbon dots – derived underlayer in hematite photoanodes. Nanoscale, 2020, 12, 20220-20229.	2.8	9
13	Ammonia Gas Sensor Response of a Vertical Zinc Oxide Nanorod-Gold Junction Diode at Room Temperature. ACS Sensors, 2020, 5, 3568-3575.	4.0	47
14	Light-intensity and thickness dependent efficiency of planar perovskite solar cells: charge recombination <i>versus</i> extraction. Journal of Materials Chemistry C, 2020, 8, 12648-12655.	2.7	70
15	Role of Temperature and Growth Period in the Synthesis of Hydrothermally Grown TiO ₂ Nanorods. Journal of Nanoscience and Nanotechnology, 2020, 20, 3873-3878.	0.9	3
16	Photocatalytic activity of 2D nanosheets of ferroelectric Dion–Jacobson compounds. Journal of Materials Chemistry A, 2020, 8, 6564-6568.	5.2	11
17	Low Temperature Scalable Deposition of Copper(I) Thiocyanate Films via Aerosol-Assisted Chemical Vapor Deposition. Crystal Growth and Design, 2020, 20, 5380-5386.	1.4	3
18	Self-adhesive electrode applied to ZnO nanorod-based piezoelectric nanogenerators. Smart Materials and Structures, 2019, 28, 105040.	1.8	3

JOE BRISCOE

#	Article	IF	CITATIONS
19	ZnO nanowires for solar cells: a comprehensive review. Nanotechnology, 2019, 30, 362001.	1.3	96
20	Influence of ferroelectric dipole on the photocatalytic activity of heterostructured BaTiO ₃ /a-Fe ₂ O ₃ . Nanotechnology, 2019, 30, 255702.	1.3	24
21	Bi ₂ Fe ₄ O ₉ thin films as novel visible-light-active photoanodes for solar water splitting. Journal of Materials Chemistry A, 2019, 7, 9537-9541.	5.2	35
22	Unusual Thermal Boundary Resistance in Halide Perovskites: A Way To Tune Ultralow Thermal Conductivity for Thermoelectrics. ACS Applied Materials & Interfaces, 2019, 11, 47507-47515.	4.0	24
23	Optimization of 3D ZnO brush-like nanorods for dye-sensitized solar cells. RSC Advances, 2018, 8, 9775-9782.	1.7	16
24	Aerosol assisted chemical vapour deposition of conformal ZnO compact layers for efficient electron transport in perovskite solar cells. Materials Letters, 2018, 217, 251-254.	1.3	20
25	Control of oxygen vacancies in ZnO nanorods by annealing and their influence on ZnO/PEDOT:PSS diode behaviour. Journal of Materials Chemistry C, 2018, 6, 1815-1821.	2.7	129
26	The Effect of Semiconductor Morphology on the Spatial Resolution of ZnO Based Light-Addressable Potentiometric Sensors. Proceedings (mdpi), 2018, 2, 917.	0.2	1
27	Light-Addressable Potentiometric Sensors Using ZnO Nanorods as the Sensor Substrate for Bioanalytical Applications. Analytical Chemistry, 2018, 90, 8708-8715.	3.2	30
28	Biomass-Derived Nitrogen-Doped Carbon Aerogel Counter Electrodes for Dye Sensitized Solar Cells. Materials, 2018, 11, 1171.	1.3	22
29	Filtration effects of graphene nanoplatelets in resin infusion processes: Problems and possible solutions. Composites Science and Technology, 2017, 139, 138-145.	3.8	48
30	Carbonâ€Nanodot Solar Cells from Renewable Precursors. ChemSusChem, 2017, 10, 1004-1013.	3.6	57
31	Avoiding ambient air and light induced degradation in high-efficiency polymer solar cells by the use of hydrogen-doped zinc oxide as electron extraction material. Nano Energy, 2017, 34, 500-514.	8.2	45
32	Optimization of sputtered ZnO transparent conductive seed layer for flexible ZnO-nanorod-based devices. Thin Solid Films, 2017, 634, 169-174.	0.8	11
33	Improved Stability of Polymer Solar Cells in Ambient Air via Atomic Layer Deposition of Ultrathin Dielectric Layers. Advanced Materials Interfaces, 2017, 4, 1700231.	1.9	8
34	Enhanced Photocatalytic Activity of Heterostructured Ferroelectric BaTiO ₃ /l±-Fe ₂ O ₃ and the Significance of Interface Morphology Control. ACS Applied Materials & Interfaces, 2017, 9, 24518-24526.	4.0	135
35	Photoâ€enhanced catalytic activity of sprayâ€coated Cu ₂ SnSe ₃ nanoparticle counter electrode for dyeâ€sensitised solar cells. Physica Status Solidi - Rapid Research Letters, 2016, 10, 739-744.	1.2	5
36	Bismuth Ferrite Enhanced ZnO Solid State Dye-sensitised Solar Cell. Procedia Engineering, 2016, 139, 15-21.	1.2	9

JOE BRISCOE

#	Article	IF	CITATIONS
37	The Future of Using Earthâ€Abundant Elements in Counter Electrodes for Dyeâ€Sensitized Solar Cells. Advanced Materials, 2016, 28, 3802-3813.	11.1	98
38	Surface passivation effect by fluorine plasma treatment on ZnO for efficiency and lifetime improvement of inverted polymer solar cells. Journal of Materials Chemistry A, 2016, 4, 11844-11858.	5.2	62
39	Dye-Sensitized Solar Cells: The Future of Using Earth-Abundant Elements in Counter Electrodes for Dye-Sensitized Solar Cells (Adv. Mater. 20/2016). Advanced Materials, 2016, 28, 3976-3976.	11.1	4
40	Biomassâ€Derived Carbon Quantum Dot Sensitizers for Solid‣tate Nanostructured Solar Cells. Angewandte Chemie - International Edition, 2015, 54, 4463-4468.	7.2	315
41	ZnO nanorod surface modification with PDDA/PSS Bi-layer assembly for performance improvement of ZnO piezoelectric energy harvesting devices. Journal of Sol-Gel Science and Technology, 2015, 73, 544-549.	1.1	9
42	Piezoelectric nanogenerators – a review of nanostructured piezoelectric energy harvesters. Nano Energy, 2015, 14, 15-29.	8.2	437
43	A simple, low-cost CVD route to high-quality CH ₃ NH ₃ Pbl ₃ perovskite thin films. CrystEngComm, 2015, 17, 7486-7489.	1.3	28
44	Chemical Protection of ZnO Nanorods at Ultralow pH To Form a Hierarchical BiFeO ₃ /ZnO Core–Shell Structure. ACS Applied Materials & Interfaces, 2015, 7, 152-157.	4.0	25
45	Correlation Between Stem Cell Differentiation and the Topography of Zinc Oxide Nanorods. Journal of Bionanoscience, 2015, 9, 73-76.	0.4	2
46	Nanostructured Materials. SpringerBriefs in Materials, 2014, , 19-55.	0.1	1
47	Acoustic Enhancement of Polymer/ZnO Nanorod Photovoltaic Device Performance. Advanced Materials, 2014, 26, 263-268.	11.1	67
48	Improved performance of p–n junction-based ZnO nanogenerators through CuSCN-passivation of ZnO nanorods. Journal of Materials Chemistry A, 2014, 2, 10945.	5.2	54
49	Enhanced performance with bismuth ferrite perovskite in ZnO nanorod solid state solar cells. Nanoscale, 2014, 6, 7072-7078.	2.8	31
50	Measurement techniques for piezoelectric nanogenerators. Energy and Environmental Science, 2013, 6, 3035.	15.6	158
51	Improved CuSCN–ZnO diode performance with spray deposited CuSCN. Thin Solid Films, 2013, 531, 404-407.	0.8	33
52	A Selfâ€Powered ZnOâ€Nanorod/CuSCN UV Photodetector Exhibiting Rapid Response. Advanced Materials, 2013, 25, 867-871.	11.1	376
53	Non-volatile electrically-driven repeatable magnetization reversal with no applied magnetic field. Nature Communications, 2013, 4, 1453.	5.8	111
54	Influence of anneal atmosphere on ZnO-nanorod photoluminescent and morphological properties with self-powered photodetector performance. Journal of Applied Physics, 2013, 113, .	1.1	53

JOE BRISCOE

#	Article	IF	CITATIONS
55	Effect of Ferroelectricity on Solar-Light-Driven Photocatalytic Activity of BaTiO ₃ —Influence on the Carrier Separation and Stern Layer Formation. Chemistry of Materials, 2013, 25, 4215-4223.	3.2	458
56	ZnO Nanostructured Diodes - Enhancing Energy Generation through Scavenging Vibration. Materials Research Society Symposia Proceedings, 2013, 1556, 1.	0.1	2
57	ZnO nanogenerators: energy generation through scavenging vibration, advantages of using a diode. Proceedings of SPIE, 2013, , .	0.8	0
58	Investigating the source of deep-level photoluminescence in ZnO nanorods using optically detected x-ray absorption spectroscopy. Journal of Applied Physics, 2013, 114, 153517.	1.1	7
59	Passivation of Zinc Oxide Nanowires for Improved Piezoelectric Energy Harvesting Devices. Journal of Physics: Conference Series, 2013, 476, 012131.	0.3	13
60	Piezoelectric Enhancement of Hybrid Organic/Inorganic Photovoltaic Device. Journal of Physics: Conference Series, 2013, 476, 012009.	0.3	4
61	Nanostructured Zinc Oxide Piezoelectric Energy Generators Based on Semiconductor P-N Junctions. Materials Research Society Symposia Proceedings, 2012, 1439, 151-156.	0.1	3
62	Measured efficiency of a ZnO nanostructured diode piezoelectric energy harvesting device. Applied Physics Letters, 2012, 101, 093902.	1.5	14
63	Nanostructured pâ€n Junctions for Kineticâ€ŧoâ€Electrical Energy Conversion. Advanced Energy Materials, 2012, 2, 1261-1268.	10.2	94
64	Extremely thin absorber solar cells based on nanostructured semiconductors. Materials Science and Technology, 2011, 27, 1741-1756.	0.8	27
65	Enhanced quantum dot deposition on ZnO nanorods for photovoltaics through layer-by-layer processing. Journal of Materials Chemistry, 2011, 21, 2517.	6.7	51
66	ZnO Nanorods—A Backbone for PV's. Ferroelectrics, 2011, 420, 19-24.	0.3	0
67	Influence of Annealing on Composition and Optical Properties of CdTe Nanoparticle Layer-by-Layer Films. Journal of Nanoscience and Nanotechnology, 2011, 11, 5270-5273.	0.9	1
68	Antimony Doped ZnO Nanorods - A Change From n to p Type?. Materials Research Society Symposia Proceedings, 2010, 1256, 1.	0.1	0
69	Layer-by-layer CdTe Nanoparticle Absorbers for ZnO Nanorod Solar Cells - The Influence of Annealing on Cell Performance. Materials Research Society Symposia Proceedings, 2010, 1260, 1.	0.1	1
70	Effect of Transparent Electrode on the Performance of Bulk Heterojunction Solar Cells. Materials Research Society Symposia Proceedings, 2010, 1270, 1.	0.1	0
71	In situ antimony doping of solution-grown ZnO nanorods. Chemical Communications, 2009, , 1273.	2.2	34
72	Renewable Solar Cells. ChemistryViews, 0, , .	0.0	0

Joe Briscoe								
		-	ъ	D.	10	\sim	\sim	-
	ю	-	n	R	5		•	E .

#	Article	IF	CITATIONS
73	Additive-Enhanced Aerosol Treatment for Improved Perovskite Solar Cells and Photodetectors. , 0, , .		0