
Kihoon Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5231710/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SHANK3 overexpression causes manic-like behaviour with unique pharmacogenetic properties. Nature, 2013, 503, 72-77.	13.7	323
2	Pumilio1 Haploinsufficiency Leads to SCA1-like Neurodegeneration by Increasing Wild-Type Ataxin1 Levels. Cell, 2015, 160, 1087-1098.	13.5	139
3	SALM Synaptic Cell Adhesion-like Molecules Regulate the Differentiation of Excitatory Synapses. Neuron, 2006, 50, 233-245.	3.8	138
4	Synaptic adhesion molecules and PSD-95. Progress in Neurobiology, 2008, 84, 263-283.	2.8	131
5	Human-specific regulation of MeCP2 levels in fetal brains by microRNA miR-483-5p. Genes and Development, 2013, 27, 485-490.	2.7	95
6	Selected SALM (Synaptic Adhesion-Like Molecule) Family Proteins Regulate Synapse Formation. Journal of Neuroscience, 2010, 30, 5559-5568.	1.7	87
7	Fragile X-like behaviors and abnormal cortical dendritic spines in Cytoplasmic FMR1-interacting protein 2-mutant mice. Human Molecular Genetics, 2015, 24, 1813-1823.	1.4	66
8	An autism-linked missense mutation in SHANK3 reveals the modularity of Shank3 function. Molecular Psychiatry, 2020, 25, 2534-2555.	4.1	61
9	Post-transcriptional regulation of SHANK3 expression by microRNAs related to multiple neuropsychiatric disorders. Molecular Brain, 2015, 8, 74.	1.3	60
10	Regulation of Dendritic Spines, Spatial Memory, and Embryonic Development by the TANC Family of PSD-95-Interacting Proteins. Journal of Neuroscience, 2010, 30, 15102-15112.	1.7	58
11	Regulated RalBP1 Binding to RalA and PSD-95 Controls AMPA Receptor Endocytosis and LTD. PLoS Biology, 2009, 7, e1000187.	2.6	57
12	Synaptic removal of diacylglycerol by DGKζ and PSD-95 regulates dendritic spine maintenance. EMBO Journal, 2009, 28, 1170-1179.	3.5	57
13	DGKÎ ¹ regulates presynaptic release during mGluR-dependent LTD. EMBO Journal, 2011, 30, 165-180.	3.5	55
14	Striatal Transcriptome and Interactome Analysis of Shank3-overexpressing Mice Reveals the Connectivity between Shank3 and mTORC1 Signaling. Frontiers in Molecular Neuroscience, 2017, 10, 201.	1.4	48
15	Integrative Brain Transcriptome Analysis Reveals Region-Specific and Broad Molecular Changes in Shank3-Overexpressing Mice. Frontiers in Molecular Neuroscience, 2018, 11, 250.	1.4	44
16	Excitatory and inhibitory synaptic dysfunction in mania: an emerging hypothesis from animal model studies. Experimental and Molecular Medicine, 2018, 50, 1-11.	3.2	40
17	Bipolar Disorder Associated microRNA, miR-1908-5p, Regulates the Expression of Genes Functioning in Neuronal Glutamatergic Synapses. Experimental Neurobiology, 2016, 25, 296-306.	0.7	34
18	The Phosphoinositide 3-Phosphatase MTMR2 Interacts with PSD-95 and Maintains Excitatory Synapses by Modulating Endosomal Traffic. Journal of Neuroscience, 2010, 30, 5508-5518.	1.7	33

Kihoon Han

#	Article	IF	CITATIONS
19	Integrative Analysis of Brain Region-specific Shank3 Interactomes for Understanding the Heterogeneity of Neuronal Pathophysiology Related to SHANK3 Mutations. Frontiers in Molecular Neuroscience, 2017, 10, 110.	1.4	32
20	Neuronal function and dysfunction of CYFIP2: from actin dynamics to early infantile epileptic encephalopathy. BMB Reports, 2019, 52, 304-311.	1.1	26
21	Coexpression enrichment analysis at the single-cell level reveals convergent defects in neural progenitor cells and their cell-type transitions in neurodevelopmental disorders. Genome Research, 2020, 30, 835-848.	2.4	25
22	Age-dependent decrease of GAD65/67 mRNAs but normal densities of GABAergic interneurons in the brain regions of Shank3 -overexpressing manic mouse model. Neuroscience Letters, 2017, 649, 48-54.	1.0	24
23	A kinome-wide RNAi screen identifies ERK2 as a druggable regulator of Shank3 stability. Molecular Psychiatry, 2020, 25, 2504-2516.	4.1	23
24	Mice lacking the synaptic adhesion molecule Neph2/Kirrel3 display moderate hyperactivity and defective novel object preference. Frontiers in Cellular Neuroscience, 2015, 9, 283.	1.8	22
25	Shank3 regulates striatal synaptic abundance of Cyld, a deubiquitinase specific for Lys63â€linked polyubiquitin chains. Journal of Neurochemistry, 2019, 150, 776-786.	2.1	22
26	Phosphorylation of CYFIP2, a component of the WAVE-regulatory complex, regulates dendritic spine density and neurite outgrowth in cultured hippocampal neurons potentially by affecting the complex assembly. NeuroReport, 2017, 28, 749-754.	0.6	20
27	Differential cell-type-expression of CYFIP1 and CYFIP2 in the adult mouse hippocampus. Animal Cells and Systems, 2019, 23, 380-383.	0.8	20
28	Smaller Body Size, Early Postnatal Lethality, and Cortical Extracellular Matrix-Related Gene Expression Changes of Cyfip2-Null Embryonic Mice. Frontiers in Molecular Neuroscience, 2018, 11, 482.	1.4	19
29	A novel CD147 inhibitor, SP-8356, reduces neointimal hyperplasia and arterial stiffness in a rat model of partial carotid artery ligation. Journal of Translational Medicine, 2019, 17, 274.	1.8	17
30	Increased Excitatory Synaptic Transmission of Dentate Granule Neurons in Mice Lacking PSD-95-Interacting Adhesion Molecule Neph2/Kirrel3 during the Early Postnatal Period. Frontiers in Molecular Neuroscience, 2017, 10, 81.	1.4	14
31	Spontaneous seizure and partial lethality of juvenile Shank3-overexpressing mice in C57BL/6ÂJ background. Molecular Brain, 2018, 11, 57.	1.3	14
32	Transcriptome analyses suggest minimal effects of Shank3 dosage on directional gene expression changes in the mouse striatum. Animal Cells and Systems, 2019, 23, 270-274.	0.8	14
33	Epilepsy- and intellectual disability-associated CYFIP2 interacts with both actin regulators and RNA-binding proteins in the neonatal mouse forebrain. Biochemical and Biophysical Research Communications, 2020, 529, 1-6.	1.0	14
34	Characterization of the zinc-induced Shank3 interactome of mouse synaptosome. Biochemical and Biophysical Research Communications, 2017, 494, 581-586.	1.0	13
35	Emerging role of synaptic actin-regulatory pathway in the pathophysiology of mood disorders. Animal Cells and Systems, 2015, 19, 283-288.	0.8	11
36	Unexpected Compensatory Increase in Shank3 Transcripts in Shank3 Knock-Out Mice Having Partial Deletions of Exons. Frontiers in Molecular Neuroscience, 2019, 12, 228.	1.4	11

Κιμοόν Ηάν

#	Article	IF	CITATIONS
37	Reduced CYFIP2 Stability by Arg87 Variants Causing Human Neurological Disorders. Annals of Neurology, 2019, 86, 803-805.	2.8	11
38	Haploinsufficiency of <i>Cyfip2</i> Causes <scp>Lithiumâ€Responsive</scp> Prefrontal Dysfunction. Annals of Neurology, 2020, 88, 526-543.	2.8	11
39	Down-regulation of RalBP1 expression reduces seizure threshold and synaptic inhibition in mice. Biochemical and Biophysical Research Communications, 2013, 433, 175-180.	1.0	10
40	Increased ribosomal protein levels and protein synthesis in the striatal synaptosome of Shank3-overexpressing transgenic mice. Molecular Brain, 2021, 14, 39.	1.3	10
41	Enhanced Prefrontal Neuronal Activity and Social Dominance Behavior in Postnatal Forebrain Excitatory Neuron-Specific Cyfip2 Knock-Out Mice. Frontiers in Molecular Neuroscience, 2020, 13, 574947.	1.4	9
42	Editorial: Shankopathies: Shank Protein Deficiency-Induced Synaptic Diseases. Frontiers in Molecular Neuroscience, 2020, 13, 11.	1.4	9
43	The Neomycin Resistance Cassette in the Targeted Allele of Shank3B Knock-Out Mice Has Potential Off-Target Effects to Produce an Unusual Shank3 Isoform. Frontiers in Molecular Neuroscience, 2020, 13, 614435.	1.4	9
44	Transcriptome analysis of Shank3-overexpressing mice reveals unique molecular changes in the hypothalamus. Molecular Brain, 2018, 11, 71.	1.3	7
45	Altered presynaptic function and number of mitochondria in the medial prefrontal cortex of adult Cyfip2 heterozygous mice. Molecular Brain, 2020, 13, 123.	1.3	6
46	Emerging roles of Lys63-linked polyubiquitination in neuronal excitatory postsynapses. Archives of Pharmacal Research, 2019, 42, 285-292.	2.7	3
47	Protein interactome and cellâ€type expression analyses reveal that cytoplasmic <scp>FMR1</scp> â€interacting protein 1 (<scp>CYFIP1</scp>), but not <scp>CYFIP2</scp> , associates with astrocytic focal adhesion. Journal of Neurochemistry, 2022, 162, 190-206.	2.1	3
48	Elevated RalA activity in the hippocampus of PI3KÎ ³ knock-out mice lacking NMDAR-dependent long-term depression. BMB Reports, 2013, 46, 103-106.	1.1	2
49	Repeated ketamine anesthesia during neurodevelopment upregulates hippocampal activity and enhances drug reward in male mice. Communications Biology, 2022, 5, .	2.0	1